[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Xen-changelog] The patch removes broken, and very complicated malloc in



# HG changeset patch
# User kaf24@xxxxxxxxxxxxxxxxxxxx
# Node ID 581be7c5e9e4e1ff2ba29561478786d4b4f59465
# Parent  83c73802f02a0841d3ad697273de76654527f24b
The patch removes broken, and very complicated malloc in
favour of much simpler (and working) Xen's allocator
(xmalloc by Rusty).

Signed-off-by: Grzegorz Milos <gm281@xxxxxxxxx>

diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/include/lib.h
--- a/extras/mini-os/include/lib.h      Fri Aug 26 09:29:54 2005
+++ b/extras/mini-os/include/lib.h      Fri Aug 26 10:35:36 2005
@@ -79,36 +79,4 @@
 char  *strstr(const char *s1, const char *s2);
 
 
-/* dlmalloc functions */
-struct mallinfo {
-  int arena;    /* non-mmapped space allocated from system */
-  int ordblks;  /* number of free chunks */
-  int smblks;   /* number of fastbin blocks */
-  int hblks;    /* number of mmapped regions */
-  int hblkhd;   /* space in mmapped regions */
-  int usmblks;  /* maximum total allocated space */
-  int fsmblks;  /* space available in freed fastbin blocks */
-  int uordblks; /* total allocated space */
-  int fordblks; /* total free space */
-  int keepcost; /* top-most, releasable (via malloc_trim) space */
-};
-
-void *malloc(size_t n);
-void *calloc(size_t n_elements, size_t element_size);
-void  free(void* p);
-void *realloc(void* p, size_t n);
-void *memalign(size_t alignment, size_t n);
-void *valloc(size_t n);
-struct mallinfo mallinfo(void);
-int  mallopt(int parameter_number, int parameter_value);
-
-void **independent_calloc(size_t n_elements, size_t size, void* chunks[]);
-void **independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
-void *pvalloc(size_t n);
-void cfree(void* p);
-int malloc_trim(size_t pad);
-size_t malloc_usable_size(void* p);
-void malloc_stats(void);
-
-
 #endif /* _LIB_H_ */
diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/include/mm.h
--- a/extras/mini-os/include/mm.h       Fri Aug 26 09:29:54 2005
+++ b/extras/mini-os/include/mm.h       Fri Aug 26 10:35:36 2005
@@ -126,6 +126,18 @@
 
 void init_mm(void);
 unsigned long alloc_pages(int order);
-int is_mfn_mapped(unsigned long mfn);
+#define alloc_page()    alloc_pages(0);
+void free_pages(void *pointer, int order);
+//int is_mfn_mapped(unsigned long mfn);
+
+static __inline__ int get_order(unsigned long size)
+{
+    int order;
+    size = (size-1) >> PAGE_SHIFT;
+    for ( order = 0; size; order++ )
+        size >>= 1;
+    return order;
+}
+
 
 #endif /* _MM_H_ */
diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/include/types.h
--- a/extras/mini-os/include/types.h    Fri Aug 26 09:29:54 2005
+++ b/extras/mini-os/include/types.h    Fri Aug 26 10:35:36 2005
@@ -49,4 +49,6 @@
 typedef unsigned long       u_quad_t;
 typedef unsigned long       uintptr_t;
 #endif
+
+#define UINT_MAX            (~0U)
 #endif /* _TYPES_H_ */
diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/mm.c
--- a/extras/mini-os/mm.c       Fri Aug 26 09:29:54 2005
+++ b/extras/mini-os/mm.c       Fri Aug 26 10:35:36 2005
@@ -1,6 +1,7 @@
-/* -*-  Mode:C; c-basic-offset:4; tab-width:4 -*-
+/* 
  ****************************************************************************
  * (C) 2003 - Rolf Neugebauer - Intel Research Cambridge
+ * (C) 2005 - Grzegorz Milos - Intel Research Cambridge
  ****************************************************************************
  *
  *        File: mm.c
@@ -13,8 +14,6 @@
  * Description: memory management related functions
  *              contains buddy page allocator from Xen.
  *
- ****************************************************************************
- * $Id: c-insert.c,v 1.7 2002/11/08 16:04:34 rn Exp $
  ****************************************************************************
  * Permission is hereby granted, free of charge, to any person obtaining a copy
  * of this software and associated documentation files (the "Software"), to
@@ -40,7 +39,7 @@
 #include <mm.h>
 #include <types.h>
 #include <lib.h>
-
+#include <xmalloc.h>
 
 #ifdef MM_DEBUG
 #define DEBUG(_f, _a...) \
@@ -505,6 +504,6 @@
            (u_long)to_virt(PFN_PHYS(max_pfn)), PFN_PHYS(max_pfn));
     init_page_allocator(PFN_PHYS(start_pfn), PFN_PHYS(max_pfn));   
 #endif
-
+    
     printk("MM: done\n");
 }
diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/include/xmalloc.h
--- /dev/null   Fri Aug 26 09:29:54 2005
+++ b/extras/mini-os/include/xmalloc.h  Fri Aug 26 10:35:36 2005
@@ -0,0 +1,23 @@
+#ifndef __XMALLOC_H__
+#define __XMALLOC_H__
+
+/* Allocate space for typed object. */
+#define xmalloc(_type) ((_type *)_xmalloc(sizeof(_type), __alignof__(_type)))
+
+/* Allocate space for array of typed objects. */
+#define xmalloc_array(_type, _num) ((_type *)_xmalloc_array(sizeof(_type), 
__alignof__(_type), _num))
+
+/* Free any of the above. */
+extern void xfree(const void *);
+
+/* Underlying functions */
+extern void *_xmalloc(size_t size, size_t align);
+static inline void *_xmalloc_array(size_t size, size_t align, size_t num)
+{
+       /* Check for overflow. */
+       if (size && num > UINT_MAX / size)
+               return NULL;
+       return _xmalloc(size * num, align);
+}
+
+#endif /* __XMALLOC_H__ */
diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/lib/xmalloc.c
--- /dev/null   Fri Aug 26 09:29:54 2005
+++ b/extras/mini-os/lib/xmalloc.c      Fri Aug 26 10:35:36 2005
@@ -0,0 +1,219 @@
+/* 
+ ****************************************************************************
+ * (C) 2005 - Grzegorz Milos - Intel Research Cambridge
+ ****************************************************************************
+ *
+ *        File: xmaloc.c
+ *      Author: Grzegorz Milos (gm281@xxxxxxxxx)
+ *     Changes: 
+ *              
+ *        Date: Aug 2005
+ * 
+ * Environment: Xen Minimal OS
+ * Description: simple memory allocator
+ *
+ ****************************************************************************
+ * Simple allocator for Mini-os.  If larger than a page, simply use the
+ * page-order allocator.
+ *
+ * Copy of the allocator for Xen by Rusty Russell:
+ * Copyright (C) 2005 Rusty Russell IBM Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+
+#include <os.h>
+#include <mm.h>
+#include <types.h>
+#include <lib.h>
+#include <list.h>
+
+static LIST_HEAD(freelist);
+/* static spinlock_t freelist_lock = SPIN_LOCK_UNLOCKED; */
+
+struct xmalloc_hdr
+{
+    /* Total including this hdr. */
+    size_t size;
+    struct list_head freelist;
+} __cacheline_aligned;
+
+static void maybe_split(struct xmalloc_hdr *hdr, size_t size, size_t block)
+{
+    struct xmalloc_hdr *extra;
+    size_t leftover = block - size;
+
+    /* If enough is left to make a block, put it on free list. */
+    if ( leftover >= (2 * sizeof(struct xmalloc_hdr)) )
+    {
+        extra = (struct xmalloc_hdr *)((unsigned long)hdr + size);
+        extra->size = leftover;
+        list_add(&extra->freelist, &freelist);
+    }
+    else
+    {
+        size = block;
+    }
+
+    hdr->size = size;
+    /* Debugging aid. */
+    hdr->freelist.next = hdr->freelist.prev = NULL;
+}
+
+static void *xmalloc_new_page(size_t size)
+{
+    struct xmalloc_hdr *hdr;
+    /* unsigned long flags; */
+
+    hdr = (struct xmalloc_hdr *)alloc_page();
+    if ( hdr == NULL )
+        return NULL;
+
+    /* spin_lock_irqsave(&freelist_lock, flags); */
+    maybe_split(hdr, size, PAGE_SIZE);
+    /* spin_unlock_irqrestore(&freelist_lock, flags); */
+
+    return hdr+1;
+}
+
+/* Big object?  Just use the page allocator. */
+static void *xmalloc_whole_pages(size_t size)
+{
+    struct xmalloc_hdr *hdr;
+    unsigned int pageorder = get_order(size);
+
+    hdr = (struct xmalloc_hdr *)alloc_pages(pageorder);
+    if ( hdr == NULL )
+        return NULL;
+
+    hdr->size = (1 << (pageorder + PAGE_SHIFT));
+    /* Debugging aid. */
+    hdr->freelist.next = hdr->freelist.prev = NULL;
+
+    return hdr+1;
+}
+
+/* Return size, increased to alignment with align. */
+static inline size_t align_up(size_t size, size_t align)
+{
+    return (size + align - 1) & ~(align - 1);
+}
+
+void *_xmalloc(size_t size, size_t align)
+{
+    struct xmalloc_hdr *i;
+    /* unsigned long flags; */
+
+    /* Add room for header, pad to align next header. */
+    size += sizeof(struct xmalloc_hdr);
+    size = align_up(size, __alignof__(struct xmalloc_hdr));
+
+    /* For big allocs, give them whole pages. */
+    if ( size >= PAGE_SIZE )
+        return xmalloc_whole_pages(size);
+
+    /* Search free list. */
+    /* spin_lock_irqsave(&freelist_lock, flags); */
+    list_for_each_entry( i, &freelist, freelist )
+    {
+        if ( i->size < size )
+            continue;
+        list_del(&i->freelist);
+        maybe_split(i, size, i->size);
+        /* spin_unlock_irqrestore(&freelist_lock, flags); */
+        return i+1;
+    }
+    /* spin_unlock_irqrestore(&freelist_lock, flags); */
+
+    /* Alloc a new page and return from that. */
+    return xmalloc_new_page(size);
+}
+
+void xfree(const void *p)
+{
+    /* unsigned long flags; */
+    struct xmalloc_hdr *i, *tmp, *hdr;
+
+    if ( p == NULL )
+        return;
+
+    hdr = (struct xmalloc_hdr *)p - 1;
+
+    /* We know hdr will be on same page. */
+    if(((long)p & PAGE_MASK) != ((long)hdr & PAGE_MASK))
+    {
+        printk("Header should be on the same page\n");
+        *(int*)0=0;
+    }
+
+    /* Not previously freed. */
+    if(hdr->freelist.next || hdr->freelist.prev)
+    {
+        printk("Should not be previously freed\n");
+        *(int*)0=0;
+    }
+
+    /* Big allocs free directly. */
+    if ( hdr->size >= PAGE_SIZE )
+    {
+        free_pages(hdr, get_order(hdr->size));
+        return;
+    }
+
+    /* Merge with other free block, or put in list. */
+    /* spin_lock_irqsave(&freelist_lock, flags); */
+    list_for_each_entry_safe( i, tmp, &freelist, freelist )
+    {
+        unsigned long _i   = (unsigned long)i;
+        unsigned long _hdr = (unsigned long)hdr;
+
+        /* Do not merge across page boundaries. */
+        if ( ((_i ^ _hdr) & PAGE_MASK) != 0 )
+            continue;
+
+        /* We follow this block?  Swallow it. */
+        if ( (_i + i->size) == _hdr )
+        {
+            list_del(&i->freelist);
+            i->size += hdr->size;
+            hdr = i;
+        }
+
+        /* We precede this block? Swallow it. */
+        if ( (_hdr + hdr->size) == _i )
+        {
+            list_del(&i->freelist);
+            hdr->size += i->size;
+        }
+    }
+
+    /* Did we merge an entire page? */
+    if ( hdr->size == PAGE_SIZE )
+    {
+        if((((unsigned long)hdr) & (PAGE_SIZE-1)) != 0)
+        {
+            printk("Bug\n");
+            *(int*)0=0;
+        }
+        free_pages(hdr, 0);
+    }
+    else
+    {
+        list_add(&hdr->freelist, &freelist);
+    }
+
+    /* spin_unlock_irqrestore(&freelist_lock, flags); */
+}
+
diff -r 83c73802f02a -r 581be7c5e9e4 extras/mini-os/lib/malloc.c
--- a/extras/mini-os/lib/malloc.c       Fri Aug 26 09:29:54 2005
+++ /dev/null   Fri Aug 26 10:35:36 2005
@@ -1,5697 +0,0 @@
-/* -*-  Mode:C; c-basic-offset:4; tab-width:4 -*-
- ****************************************************************************
- * (C) 2003 - Rolf Neugebauer - Intel Research Cambridge
- ****************************************************************************
- *
- *        File: malloc.c
- *      Author: Rolf Neugebauer (neugebar@xxxxxxxxxxxxx)
- *     Changes: 
- *              
- *        Date: Aug 2003
- * 
- * Environment: Xen Minimal OS
- * Description: Library functions, maloc at al
- *
- ****************************************************************************
- * $Id: c-insert.c,v 1.7 2002/11/08 16:04:34 rn Exp $
- ****************************************************************************
- */
-
-#include <os.h>
-#include <mm.h>
-#include <types.h>
-#include <lib.h>
-
-/* standard compile option */
-#define HAVE_MEMCOPY                1
-#define USE_MEMCPY                  1
-#undef  HAVE_MMAP
-#undef  MMAP_CLEARS
-#undef  HAVE_MREMAP
-#define malloc_getpagesize          PAGE_SIZE
-#undef  HAVE_USR_INCLUDE_MALLOC_H   
-#define LACKS_UNISTD_H              1
-#define LACKS_SYS_PARAM_H           1
-#define LACKS_SYS_MMAN_H            1
-#define LACKS_FCNTL_H               1
-
-
-/* page allocator interface */
-#define MORECORE             more_core
-#define MORECORE_CONTIGUOUS  0
-#define MORECORE_FAILURE     0
-#define MORECORE_CANNOT_TRIM 1
-
-static void *more_core(size_t n)
-{
-    static void *last;
-    unsigned long order, num_pages;
-    void *ret;
-
-    if (n == 0)
-        return last;
-    
-    n = PFN_UP(n);
-    for ( order = 0; n > 1; order++ )
-        n >>= 1;
-    ret = (void *)alloc_pages(order);
-
-    /* work out pointer to end of chunk */
-    if ( ret )
-    {
-        num_pages = 1 << order;
-        last = (char *)ret + (num_pages * PAGE_SIZE);
-    }
-
-    return ret;      
-}
-
-/* other options commented out below */
-#define __STD_C     1
-#define Void_t      void
-#define assert(x) ((void)0)
-
-#define CHUNK_SIZE_T unsigned long
-#define PTR_UINT unsigned long
-#define INTERNAL_SIZE_T size_t
-#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
-#define MALLOC_ALIGNMENT       (2 * SIZE_SZ)
-#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
-#define TRIM_FASTBINS  0
-
-#define M_MXFAST            1    
-#define DEFAULT_MXFAST     64
-#define M_TRIM_THRESHOLD       -1
-#define DEFAULT_TRIM_THRESHOLD (256 * 1024)
-#define M_TOP_PAD              -2
-#define DEFAULT_TOP_PAD        (0)
-#define M_MMAP_THRESHOLD      -3
-#define DEFAULT_MMAP_THRESHOLD (256 * 1024)
-#define M_MMAP_MAX             -4
-#define DEFAULT_MMAP_MAX       (0)
-#define MALLOC_FAILURE_ACTION   printf("malloc failure\n")
-
-#define cALLOc      public_cALLOc
-#define fREe        public_fREe
-#define cFREe       public_cFREe
-#define mALLOc      public_mALLOc
-#define mEMALIGn    public_mEMALIGn
-#define rEALLOc     public_rEALLOc
-#define vALLOc      public_vALLOc
-#define pVALLOc     public_pVALLOc
-#define mALLINFo    public_mALLINFo
-#define mALLOPt     public_mALLOPt
-#define mTRIm       public_mTRIm
-#define mSTATs      public_mSTATs
-#define mUSABLe     public_mUSABLe
-#define iCALLOc     public_iCALLOc
-#define iCOMALLOc   public_iCOMALLOc
-
-#define public_cALLOc    calloc
-#define public_fREe      free
-#define public_cFREe     cfree
-#define public_mALLOc    malloc
-#define public_mEMALIGn  memalign
-#define public_rEALLOc   realloc
-#define public_vALLOc    valloc
-#define public_pVALLOc   pvalloc
-#define public_mALLINFo  mallinfo
-#define public_mALLOPt   mallopt
-#define public_mTRIm     malloc_trim
-#define public_mSTATs    malloc_stats
-#define public_mUSABLe   malloc_usable_size
-#define public_iCALLOc   independent_calloc
-#define public_iCOMALLOc independent_comalloc
-
-
-/*
-  This is a version (aka dlmalloc) of malloc/free/realloc written by
-  Doug Lea and released to the public domain.  Use, modify, and
-  redistribute this code without permission or acknowledgement in any
-  way you wish.  Send questions, comments, complaints, performance
-  data, etc to dl@xxxxxxxxxxxxx
-
-* VERSION 2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
-
-   Note: There may be an updated version of this malloc obtainable at
-           ftp://gee.cs.oswego.edu/pub/misc/malloc.c
-         Check before installing!
-
-* Quickstart
-
-  This library is all in one file to simplify the most common usage:
-  ftp it, compile it (-O), and link it into another program. All
-  of the compile-time options default to reasonable values for use on
-  most unix platforms. Compile -DWIN32 for reasonable defaults on windows.
-  You might later want to step through various compile-time and dynamic
-  tuning options.
-
-  For convenience, an include file for code using this malloc is at:
-     ftp://gee.cs.oswego.edu/pub/misc/malloc-2.7.1.h
-  You don't really need this .h file unless you call functions not
-  defined in your system include files.  The .h file contains only the
-  excerpts from this file needed for using this malloc on ANSI C/C++
-  systems, so long as you haven't changed compile-time options about
-  naming and tuning parameters.  If you do, then you can create your
-  own malloc.h that does include all settings by cutting at the point
-  indicated below.
-
-* Why use this malloc?
-
-  This is not the fastest, most space-conserving, most portable, or
-  most tunable malloc ever written. However it is among the fastest
-  while also being among the most space-conserving, portable and tunable.
-  Consistent balance across these factors results in a good general-purpose
-  allocator for malloc-intensive programs.
-
-  The main properties of the algorithms are:
-  * For large (>= 512 bytes) requests, it is a pure best-fit allocator,
-    with ties normally decided via FIFO (i.e. least recently used).
-  * For small (<= 64 bytes by default) requests, it is a caching
-    allocator, that maintains pools of quickly recycled chunks.
-  * In between, and for combinations of large and small requests, it does
-    the best it can trying to meet both goals at once.
-  * For very large requests (>= 128KB by default), it relies on system
-    memory mapping facilities, if supported.
-
-  For a longer but slightly out of date high-level description, see
-     http://gee.cs.oswego.edu/dl/html/malloc.html
-
-  You may already by default be using a C library containing a malloc
-  that is  based on some version of this malloc (for example in
-  linux). You might still want to use the one in this file in order to
-  customize settings or to avoid overheads associated with library
-  versions.
-
-* Contents, described in more detail in "description of public routines" below.
-
-  Standard (ANSI/SVID/...)  functions:
-    malloc(size_t n);
-    calloc(size_t n_elements, size_t element_size);
-    free(Void_t* p);
-    realloc(Void_t* p, size_t n);
-    memalign(size_t alignment, size_t n);
-    valloc(size_t n);
-    mallinfo()
-    mallopt(int parameter_number, int parameter_value)
-
-  Additional functions:
-    independent_calloc(size_t n_elements, size_t size, Void_t* chunks[]);
-    independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
-    pvalloc(size_t n);
-    cfree(Void_t* p);
-    malloc_trim(size_t pad);
-    malloc_usable_size(Void_t* p);
-    malloc_stats();
-
-* Vital statistics:
-
-  Supported pointer representation:       4 or 8 bytes
-  Supported size_t  representation:       4 or 8 bytes 
-       Note that size_t is allowed to be 4 bytes even if pointers are 8.
-       You can adjust this by defining INTERNAL_SIZE_T
-
-  Alignment:                              2 * sizeof(size_t) (default)
-       (i.e., 8 byte alignment with 4byte size_t). This suffices for
-       nearly all current machines and C compilers. However, you can
-       define MALLOC_ALIGNMENT to be wider than this if necessary.
-
-  Minimum overhead per allocated chunk:   4 or 8 bytes
-       Each malloced chunk has a hidden word of overhead holding size
-       and status information.
-
-  Minimum allocated size: 4-byte ptrs:  16 bytes    (including 4 overhead)
-                          8-byte ptrs:  24/32 bytes (including, 4/8 overhead)
-
-       When a chunk is freed, 12 (for 4byte ptrs) or 20 (for 8 byte
-       ptrs but 4 byte size) or 24 (for 8/8) additional bytes are
-       needed; 4 (8) for a trailing size field and 8 (16) bytes for
-       free list pointers. Thus, the minimum allocatable size is
-       16/24/32 bytes.
-
-       Even a request for zero bytes (i.e., malloc(0)) returns a
-       pointer to something of the minimum allocatable size.
-
-       The maximum overhead wastage (i.e., number of extra bytes
-       allocated than were requested in malloc) is less than or equal
-       to the minimum size, except for requests >= mmap_threshold that
-       are serviced via mmap(), where the worst case wastage is 2 *
-       sizeof(size_t) bytes plus the remainder from a system page (the
-       minimal mmap unit); typically 4096 or 8192 bytes.
-
-  Maximum allocated size:  4-byte size_t: 2^32 minus about two pages 
-                           8-byte size_t: 2^64 minus about two pages
-
-       It is assumed that (possibly signed) size_t values suffice to
-       represent chunk sizes. `Possibly signed' is due to the fact
-       that `size_t' may be defined on a system as either a signed or
-       an unsigned type. The ISO C standard says that it must be
-       unsigned, but a few systems are known not to adhere to this.
-       Additionally, even when size_t is unsigned, sbrk (which is by
-       default used to obtain memory from system) accepts signed
-       arguments, and may not be able to handle size_t-wide arguments
-       with negative sign bit.  Generally, values that would
-       appear as negative after accounting for overhead and alignment
-       are supported only via mmap(), which does not have this
-       limitation.
-
-       Requests for sizes outside the allowed range will perform an optional
-       failure action and then return null. (Requests may also
-       also fail because a system is out of memory.)
-
-  Thread-safety: NOT thread-safe unless USE_MALLOC_LOCK defined
-
-       When USE_MALLOC_LOCK is defined, wrappers are created to
-       surround every public call with either a pthread mutex or
-       a win32 spinlock (depending on WIN32). This is not
-       especially fast, and can be a major bottleneck.
-       It is designed only to provide minimal protection
-       in concurrent environments, and to provide a basis for
-       extensions.  If you are using malloc in a concurrent program,
-       you would be far better off obtaining ptmalloc, which is
-       derived from a version of this malloc, and is well-tuned for
-       concurrent programs. (See http://www.malloc.de) Note that
-       even when USE_MALLOC_LOCK is defined, you can can guarantee
-       full thread-safety only if no threads acquire memory through 
-       direct calls to MORECORE or other system-level allocators.
-
-  Compliance: I believe it is compliant with the 1997 Single Unix Specification
-       (See http://www.opennc.org). Also SVID/XPG, ANSI C, and probably 
-       others as well.
-
-* Synopsis of compile-time options:
-
-    People have reported using previous versions of this malloc on all
-    versions of Unix, sometimes by tweaking some of the defines
-    below. It has been tested most extensively on Solaris and
-    Linux. It is also reported to work on WIN32 platforms.
-    People also report using it in stand-alone embedded systems.
-
-    The implementation is in straight, hand-tuned ANSI C.  It is not
-    at all modular. (Sorry!)  It uses a lot of macros.  To be at all
-    usable, this code should be compiled using an optimizing compiler
-    (for example gcc -O3) that can simplify expressions and control
-    paths. (FAQ: some macros import variables as arguments rather than
-    declare locals because people reported that some debuggers
-    otherwise get confused.)
-
-    OPTION                     DEFAULT VALUE
-
-    Compilation Environment options:
-
-    __STD_C                    derived from C compiler defines
-    WIN32                      NOT defined
-    HAVE_MEMCPY                defined
-    USE_MEMCPY                 1 if HAVE_MEMCPY is defined
-    HAVE_MMAP                  defined as 1 
-    MMAP_CLEARS                1
-    HAVE_MREMAP                0 unless linux defined
-    malloc_getpagesize         derived from system #includes, or 4096 if not
-    HAVE_USR_INCLUDE_MALLOC_H  NOT defined
-    LACKS_UNISTD_H             NOT defined unless WIN32
-    LACKS_SYS_PARAM_H          NOT defined unless WIN32
-    LACKS_SYS_MMAN_H           NOT defined unless WIN32
-    LACKS_FCNTL_H              NOT defined
-
-    Changing default word sizes:
-
-    INTERNAL_SIZE_T            size_t
-    MALLOC_ALIGNMENT           2 * sizeof(INTERNAL_SIZE_T)
-    PTR_UINT                   unsigned long
-    CHUNK_SIZE_T               unsigned long
-
-    Configuration and functionality options:
-
-    USE_DL_PREFIX              NOT defined
-    USE_PUBLIC_MALLOC_WRAPPERS NOT defined
-    USE_MALLOC_LOCK            NOT defined
-    DEBUG                      NOT defined
-    REALLOC_ZERO_BYTES_FREES   NOT defined
-    MALLOC_FAILURE_ACTION      errno = ENOMEM, if __STD_C defined, else no-op
-    TRIM_FASTBINS              0
-    FIRST_SORTED_BIN_SIZE      512
-
-    Options for customizing MORECORE:
-
-    MORECORE                   sbrk
-    MORECORE_CONTIGUOUS        1 
-    MORECORE_CANNOT_TRIM       NOT defined
-    MMAP_AS_MORECORE_SIZE      (1024 * 1024) 
-
-    Tuning options that are also dynamically changeable via mallopt:
-
-    DEFAULT_MXFAST             64
-    DEFAULT_TRIM_THRESHOLD     256 * 1024
-    DEFAULT_TOP_PAD            0
-    DEFAULT_MMAP_THRESHOLD     256 * 1024
-    DEFAULT_MMAP_MAX           65536
-
-    There are several other #defined constants and macros that you
-    probably don't want to touch unless you are extending or adapting malloc.
-*/
-
-/* RN: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
-#if 0
-
-/*
-  WIN32 sets up defaults for MS environment and compilers.
-  Otherwise defaults are for unix.
-*/
-
-/* #define WIN32 */
-
-#ifdef WIN32
-
-#define WIN32_LEAN_AND_MEAN
-#include <windows.h>
-
-/* Win32 doesn't supply or need the following headers */
-#define LACKS_UNISTD_H
-#define LACKS_SYS_PARAM_H
-#define LACKS_SYS_MMAN_H
-
-/* Use the supplied emulation of sbrk */
-#define MORECORE sbrk
-#define MORECORE_CONTIGUOUS 1
-#define MORECORE_FAILURE    ((void*)(-1))
-
-/* Use the supplied emulation of mmap and munmap */
-#define HAVE_MMAP 1
-#define MUNMAP_FAILURE  (-1)
-#define MMAP_CLEARS 1
-
-/* These values don't really matter in windows mmap emulation */
-#define MAP_PRIVATE 1
-#define MAP_ANONYMOUS 2
-#define PROT_READ 1
-#define PROT_WRITE 2
-
-/* Emulation functions defined at the end of this file */
-
-/* If USE_MALLOC_LOCK, use supplied critical-section-based lock functions */
-#ifdef USE_MALLOC_LOCK
-static int slwait(int *sl);
-static int slrelease(int *sl);
-#endif
-
-static long getpagesize(void);
-static long getregionsize(void);
-static void *sbrk(long size);
-static void *mmap(void *ptr, long size, long prot, long type, long handle, 
long arg);
-static long munmap(void *ptr, long size);
-
-static void vminfo (unsigned long*free, unsigned long*reserved, unsigned 
long*committed);
-static int cpuinfo (int whole, unsigned long*kernel, unsigned long*user);
-
-#endif
-
-/*
-  __STD_C should be nonzero if using ANSI-standard C compiler, a C++
-  compiler, or a C compiler sufficiently close to ANSI to get away
-  with it.
-*/
-
-#ifndef __STD_C
-#if defined(__STDC__) || defined(_cplusplus)
-#define __STD_C     1
-#else
-#define __STD_C     0
-#endif 
-#endif /*__STD_C*/
-
-
-/*
-  Void_t* is the pointer type that malloc should say it returns
-*/
-
-#ifndef Void_t
-#if (__STD_C || defined(WIN32))
-#define Void_t      void
-#else
-#define Void_t      char
-#endif
-#endif /*Void_t*/
-
-#if __STD_C
-#include <stddef.h>   /* for size_t */
-#else
-#include <sys/types.h>
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/* define LACKS_UNISTD_H if your system does not have a <unistd.h>. */
-
-/* #define  LACKS_UNISTD_H */
-
-#ifndef LACKS_UNISTD_H
-#include <unistd.h>
-#endif
-
-/* define LACKS_SYS_PARAM_H if your system does not have a <sys/param.h>. */
-
-/* #define  LACKS_SYS_PARAM_H */
-
-
-#include <stdio.h>    /* needed for malloc_stats */
-#include <errno.h>    /* needed for optional MALLOC_FAILURE_ACTION */
-
-
-/*
-  Debugging:
-
-  Because freed chunks may be overwritten with bookkeeping fields, this
-  malloc will often die when freed memory is overwritten by user
-  programs.  This can be very effective (albeit in an annoying way)
-  in helping track down dangling pointers.
-
-  If you compile with -DDEBUG, a number of assertion checks are
-  enabled that will catch more memory errors. You probably won't be
-  able to make much sense of the actual assertion errors, but they
-  should help you locate incorrectly overwritten memory.  The
-  checking is fairly extensive, and will slow down execution
-  noticeably. Calling malloc_stats or mallinfo with DEBUG set will
-  attempt to check every non-mmapped allocated and free chunk in the
-  course of computing the summmaries. (By nature, mmapped regions
-  cannot be checked very much automatically.)
-
-  Setting DEBUG may also be helpful if you are trying to modify
-  this code. The assertions in the check routines spell out in more
-  detail the assumptions and invariants underlying the algorithms.
-
-  Setting DEBUG does NOT provide an automated mechanism for checking
-  that all accesses to malloced memory stay within their
-  bounds. However, there are several add-ons and adaptations of this
-  or other mallocs available that do this.
-*/
-
-#if DEBUG
-#include <assert.h>
-#else
-#define assert(x) ((void)0)
-#endif
-
-/*
-  The unsigned integer type used for comparing any two chunk sizes.
-  This should be at least as wide as size_t, but should not be signed.
-*/
-
-#ifndef CHUNK_SIZE_T
-#define CHUNK_SIZE_T unsigned long
-#endif
-
-/* 
-  The unsigned integer type used to hold addresses when they are are
-  manipulated as integers. Except that it is not defined on all
-  systems, intptr_t would suffice.
-*/
-#ifndef PTR_UINT
-#define PTR_UINT unsigned long
-#endif
-
-
-/*
-  INTERNAL_SIZE_T is the word-size used for internal bookkeeping
-  of chunk sizes.
-
-  The default version is the same as size_t.
-
-  While not strictly necessary, it is best to define this as an
-  unsigned type, even if size_t is a signed type. This may avoid some
-  artificial size limitations on some systems.
-
-  On a 64-bit machine, you may be able to reduce malloc overhead by
-  defining INTERNAL_SIZE_T to be a 32 bit `unsigned int' at the
-  expense of not being able to handle more than 2^32 of malloced
-  space. If this limitation is acceptable, you are encouraged to set
-  this unless you are on a platform requiring 16byte alignments. In
-  this case the alignment requirements turn out to negate any
-  potential advantages of decreasing size_t word size.
-
-  Implementors: Beware of the possible combinations of:
-     - INTERNAL_SIZE_T might be signed or unsigned, might be 32 or 64 bits,
-       and might be the same width as int or as long
-     - size_t might have different width and signedness as INTERNAL_SIZE_T
-     - int and long might be 32 or 64 bits, and might be the same width
-  To deal with this, most comparisons and difference computations
-  among INTERNAL_SIZE_Ts should cast them to CHUNK_SIZE_T, being
-  aware of the fact that casting an unsigned int to a wider long does
-  not sign-extend. (This also makes checking for negative numbers
-  awkward.) Some of these casts result in harmless compiler warnings
-  on some systems.
-*/
-
-#ifndef INTERNAL_SIZE_T
-#define INTERNAL_SIZE_T size_t
-#endif
-
-/* The corresponding word size */
-#define SIZE_SZ                (sizeof(INTERNAL_SIZE_T))
-
-
-
-/*
-  MALLOC_ALIGNMENT is the minimum alignment for malloc'ed chunks.
-  It must be a power of two at least 2 * SIZE_SZ, even on machines
-  for which smaller alignments would suffice. It may be defined as
-  larger than this though. Note however that code and data structures
-  are optimized for the case of 8-byte alignment.
-*/
-
-
-#ifndef MALLOC_ALIGNMENT
-#define MALLOC_ALIGNMENT       (2 * SIZE_SZ)
-#endif
-
-/* The corresponding bit mask value */
-#define MALLOC_ALIGN_MASK      (MALLOC_ALIGNMENT - 1)
-
-
-
-/*
-  REALLOC_ZERO_BYTES_FREES should be set if a call to
-  realloc with zero bytes should be the same as a call to free.
-  Some people think it should. Otherwise, since this malloc
-  returns a unique pointer for malloc(0), so does realloc(p, 0).
-*/
-
-/*   #define REALLOC_ZERO_BYTES_FREES */
-
-/*
-  TRIM_FASTBINS controls whether free() of a very small chunk can
-  immediately lead to trimming. Setting to true (1) can reduce memory
-  footprint, but will almost always slow down programs that use a lot
-  of small chunks.
-
-  Define this only if you are willing to give up some speed to more
-  aggressively reduce system-level memory footprint when releasing
-  memory in programs that use many small chunks.  You can get
-  essentially the same effect by setting MXFAST to 0, but this can
-  lead to even greater slowdowns in programs using many small chunks.
-  TRIM_FASTBINS is an in-between compile-time option, that disables
-  only those chunks bordering topmost memory from being placed in
-  fastbins.
-*/
-
-#ifndef TRIM_FASTBINS
-#define TRIM_FASTBINS  0
-#endif
-
-
-/*
-  USE_DL_PREFIX will prefix all public routines with the string 'dl'.
-  This is necessary when you only want to use this malloc in one part 
-  of a program, using your regular system malloc elsewhere.
-*/
-
-/* #define USE_DL_PREFIX */
-
-
-/*
-  USE_MALLOC_LOCK causes wrapper functions to surround each
-  callable routine with pthread mutex lock/unlock.
-
-  USE_MALLOC_LOCK forces USE_PUBLIC_MALLOC_WRAPPERS to be defined
-*/
-
-
-/* #define USE_MALLOC_LOCK */
-
-
-/*
-  If USE_PUBLIC_MALLOC_WRAPPERS is defined, every public routine is
-  actually a wrapper function that first calls MALLOC_PREACTION, then
-  calls the internal routine, and follows it with
-  MALLOC_POSTACTION. This is needed for locking, but you can also use
-  this, without USE_MALLOC_LOCK, for purposes of interception,
-  instrumentation, etc. It is a sad fact that using wrappers often
-  noticeably degrades performance of malloc-intensive programs.
-*/
-
-#ifdef USE_MALLOC_LOCK
-#define USE_PUBLIC_MALLOC_WRAPPERS
-#else
-/* #define USE_PUBLIC_MALLOC_WRAPPERS */
-#endif
-
-
-/* 
-   Two-phase name translation.
-   All of the actual routines are given mangled names.
-   When wrappers are used, they become the public callable versions.
-   When DL_PREFIX is used, the callable names are prefixed.
-*/
-
-#ifndef USE_PUBLIC_MALLOC_WRAPPERS
-#define cALLOc      public_cALLOc
-#define fREe        public_fREe
-#define cFREe       public_cFREe
-#define mALLOc      public_mALLOc
-#define mEMALIGn    public_mEMALIGn
-#define rEALLOc     public_rEALLOc
-#define vALLOc      public_vALLOc
-#define pVALLOc     public_pVALLOc
-#define mALLINFo    public_mALLINFo
-#define mALLOPt     public_mALLOPt
-#define mTRIm       public_mTRIm
-#define mSTATs      public_mSTATs
-#define mUSABLe     public_mUSABLe
-#define iCALLOc     public_iCALLOc
-#define iCOMALLOc   public_iCOMALLOc
-#endif
-
-#ifdef USE_DL_PREFIX
-#define public_cALLOc    dlcalloc
-#define public_fREe      dlfree
-#define public_cFREe     dlcfree
-#define public_mALLOc    dlmalloc
-#define public_mEMALIGn  dlmemalign
-#define public_rEALLOc   dlrealloc
-#define public_vALLOc    dlvalloc
-#define public_pVALLOc   dlpvalloc
-#define public_mALLINFo  dlmallinfo
-#define public_mALLOPt   dlmallopt
-#define public_mTRIm     dlmalloc_trim
-#define public_mSTATs    dlmalloc_stats
-#define public_mUSABLe   dlmalloc_usable_size
-#define public_iCALLOc   dlindependent_calloc
-#define public_iCOMALLOc dlindependent_comalloc
-#else /* USE_DL_PREFIX */
-#define public_cALLOc    calloc
-#define public_fREe      free
-#define public_cFREe     cfree
-#define public_mALLOc    malloc
-#define public_mEMALIGn  memalign
-#define public_rEALLOc   realloc
-#define public_vALLOc    valloc
-#define public_pVALLOc   pvalloc
-#define public_mALLINFo  mallinfo
-#define public_mALLOPt   mallopt
-#define public_mTRIm     malloc_trim
-#define public_mSTATs    malloc_stats
-#define public_mUSABLe   malloc_usable_size
-#define public_iCALLOc   independent_calloc
-#define public_iCOMALLOc independent_comalloc
-#endif /* USE_DL_PREFIX */
-
-
-/*
-  HAVE_MEMCPY should be defined if you are not otherwise using
-  ANSI STD C, but still have memcpy and memset in your C library
-  and want to use them in calloc and realloc. Otherwise simple
-  macro versions are defined below.
-
-  USE_MEMCPY should be defined as 1 if you actually want to
-  have memset and memcpy called. People report that the macro
-  versions are faster than libc versions on some systems.
-  
-  Even if USE_MEMCPY is set to 1, loops to copy/clear small chunks
-  (of <= 36 bytes) are manually unrolled in realloc and calloc.
-*/
-
-#define HAVE_MEMCPY
-
-#ifndef USE_MEMCPY
-#ifdef HAVE_MEMCPY
-#define USE_MEMCPY 1
-#else
-#define USE_MEMCPY 0
-#endif
-#endif
-
-
-#if (__STD_C || defined(HAVE_MEMCPY))
-
-#ifdef WIN32
-/* On Win32 memset and memcpy are already declared in windows.h */
-#else
-#if __STD_C
-void* memset(void*, int, size_t);
-void* memcpy(void*, const void*, size_t);
-#else
-Void_t* memset();
-Void_t* memcpy();
-#endif
-#endif
-#endif
-
-/*
-  MALLOC_FAILURE_ACTION is the action to take before "return 0" when
-  malloc fails to be able to return memory, either because memory is
-  exhausted or because of illegal arguments.
-  
-  By default, sets errno if running on STD_C platform, else does nothing.  
-*/
-
-#ifndef MALLOC_FAILURE_ACTION
-#if __STD_C
-#define MALLOC_FAILURE_ACTION \
-   errno = ENOMEM;
-
-#else
-#define MALLOC_FAILURE_ACTION
-#endif
-#endif
-
-/*
-  MORECORE-related declarations. By default, rely on sbrk
-*/
-
-
-#ifdef LACKS_UNISTD_H
-#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
-#if __STD_C
-extern Void_t*     sbrk(ptrdiff_t);
-#else
-extern Void_t*     sbrk();
-#endif
-#endif
-#endif
-
-/*
-  MORECORE is the name of the routine to call to obtain more memory
-  from the system.  See below for general guidance on writing
-  alternative MORECORE functions, as well as a version for WIN32 and a
-  sample version for pre-OSX macos.
-*/
-
-#ifndef MORECORE
-#define MORECORE sbrk
-#endif
-
-/*
-  MORECORE_FAILURE is the value returned upon failure of MORECORE
-  as well as mmap. Since it cannot be an otherwise valid memory address,
-  and must reflect values of standard sys calls, you probably ought not
-  try to redefine it.
-*/
-
-#ifndef MORECORE_FAILURE
-#define MORECORE_FAILURE (-1)
-#endif
-
-/*
-  If MORECORE_CONTIGUOUS is true, take advantage of fact that
-  consecutive calls to MORECORE with positive arguments always return
-  contiguous increasing addresses.  This is true of unix sbrk.  Even
-  if not defined, when regions happen to be contiguous, malloc will
-  permit allocations spanning regions obtained from different
-  calls. But defining this when applicable enables some stronger
-  consistency checks and space efficiencies. 
-*/
-
-#ifndef MORECORE_CONTIGUOUS
-#define MORECORE_CONTIGUOUS 1
-#endif
-
-/*
-  Define MORECORE_CANNOT_TRIM if your version of MORECORE
-  cannot release space back to the system when given negative
-  arguments. This is generally necessary only if you are using
-  a hand-crafted MORECORE function that cannot handle negative arguments.
-*/
-
-/* #define MORECORE_CANNOT_TRIM */
-
-
-/*
-  Define HAVE_MMAP as true to optionally make malloc() use mmap() to
-  allocate very large blocks.  These will be returned to the
-  operating system immediately after a free(). Also, if mmap
-  is available, it is used as a backup strategy in cases where
-  MORECORE fails to provide space from system.
-
-  This malloc is best tuned to work with mmap for large requests.
-  If you do not have mmap, operations involving very large chunks (1MB
-  or so) may be slower than you'd like.
-*/
-
-#ifndef HAVE_MMAP
-#define HAVE_MMAP 1
-#endif
-
-#if HAVE_MMAP
-/* 
-   Standard unix mmap using /dev/zero clears memory so calloc doesn't
-   need to.
-*/
-
-#ifndef MMAP_CLEARS
-#define MMAP_CLEARS 1
-#endif
-
-#else /* no mmap */
-#ifndef MMAP_CLEARS
-#define MMAP_CLEARS 0
-#endif
-#endif
-
-
-/* 
-   MMAP_AS_MORECORE_SIZE is the minimum mmap size argument to use if
-   sbrk fails, and mmap is used as a backup (which is done only if
-   HAVE_MMAP).  The value must be a multiple of page size.  This
-   backup strategy generally applies only when systems have "holes" in
-   address space, so sbrk cannot perform contiguous expansion, but
-   there is still space available on system.  On systems for which
-   this is known to be useful (i.e. most linux kernels), this occurs
-   only when programs allocate huge amounts of memory.  Between this,
-   and the fact that mmap regions tend to be limited, the size should
-   be large, to avoid too many mmap calls and thus avoid running out
-   of kernel resources.
-*/
-
-#ifndef MMAP_AS_MORECORE_SIZE
-#define MMAP_AS_MORECORE_SIZE (1024 * 1024)
-#endif
-
-/*
-  Define HAVE_MREMAP to make realloc() use mremap() to re-allocate
-  large blocks.  This is currently only possible on Linux with
-  kernel versions newer than 1.3.77.
-*/
-
-#ifndef HAVE_MREMAP
-#ifdef linux
-#define HAVE_MREMAP 1
-#else
-#define HAVE_MREMAP 0
-#endif
-
-#endif /* HAVE_MMAP */
-
-
-/*
-  The system page size. To the extent possible, this malloc manages
-  memory from the system in page-size units.  Note that this value is
-  cached during initialization into a field of malloc_state. So even
-  if malloc_getpagesize is a function, it is only called once.
-
-  The following mechanics for getpagesize were adapted from bsd/gnu
-  getpagesize.h. If none of the system-probes here apply, a value of
-  4096 is used, which should be OK: If they don't apply, then using
-  the actual value probably doesn't impact performance.
-*/
-
-
-#ifndef malloc_getpagesize
-
-#ifndef LACKS_UNISTD_H
-#  include <unistd.h>
-#endif
-
-#  ifdef _SC_PAGESIZE         /* some SVR4 systems omit an underscore */
-#    ifndef _SC_PAGE_SIZE
-#      define _SC_PAGE_SIZE _SC_PAGESIZE
-#    endif
-#  endif
-
-#  ifdef _SC_PAGE_SIZE
-#    define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
-#  else
-#    if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
-       extern size_t getpagesize();
-#      define malloc_getpagesize getpagesize()
-#    else
-#      ifdef WIN32 /* use supplied emulation of getpagesize */
-#        define malloc_getpagesize getpagesize() 
-#      else
-#        ifndef LACKS_SYS_PARAM_H
-#          include <sys/param.h>
-#        endif
-#        ifdef EXEC_PAGESIZE
-#          define malloc_getpagesize EXEC_PAGESIZE
-#        else
-#          ifdef NBPG
-#            ifndef CLSIZE
-#              define malloc_getpagesize NBPG
-#            else
-#              define malloc_getpagesize (NBPG * CLSIZE)
-#            endif
-#          else
-#            ifdef NBPC
-#              define malloc_getpagesize NBPC
-#            else
-#              ifdef PAGESIZE
-#                define malloc_getpagesize PAGESIZE
-#              else /* just guess */
-#                define malloc_getpagesize (4096) 
-#              endif
-#            endif
-#          endif
-#        endif
-#      endif
-#    endif
-#  endif
-#endif
-
-/*
-  This version of malloc supports the standard SVID/XPG mallinfo
-  routine that returns a struct containing usage properties and
-  statistics. It should work on any SVID/XPG compliant system that has
-  a /usr/include/malloc.h defining struct mallinfo. (If you'd like to
-  install such a thing yourself, cut out the preliminary declarations
-  as described above and below and save them in a malloc.h file. But
-  there's no compelling reason to bother to do this.)
-
-  The main declaration needed is the mallinfo struct that is returned
-  (by-copy) by mallinfo().  The SVID/XPG malloinfo struct contains a
-  bunch of fields that are not even meaningful in this version of
-  malloc.  These fields are are instead filled by mallinfo() with
-  other numbers that might be of interest.
-
-  HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
-  /usr/include/malloc.h file that includes a declaration of struct
-  mallinfo.  If so, it is included; else an SVID2/XPG2 compliant
-  version is declared below.  These must be precisely the same for
-  mallinfo() to work.  The original SVID version of this struct,
-  defined on most systems with mallinfo, declares all fields as
-  ints. But some others define as unsigned long. If your system
-  defines the fields using a type of different width than listed here,
-  you must #include your system version and #define
-  HAVE_USR_INCLUDE_MALLOC_H.
-*/
-
-/* #define HAVE_USR_INCLUDE_MALLOC_H */
-
-#ifdef HAVE_USR_INCLUDE_MALLOC_H
-#include "/usr/include/malloc.h"
-#else
-
-/* SVID2/XPG mallinfo structure */
-
-struct mallinfo {
-  int arena;    /* non-mmapped space allocated from system */
-  int ordblks;  /* number of free chunks */
-  int smblks;   /* number of fastbin blocks */
-  int hblks;    /* number of mmapped regions */
-  int hblkhd;   /* space in mmapped regions */
-  int usmblks;  /* maximum total allocated space */
-  int fsmblks;  /* space available in freed fastbin blocks */
-  int uordblks; /* total allocated space */
-  int fordblks; /* total free space */
-  int keepcost; /* top-most, releasable (via malloc_trim) space */
-};
-
-/*
-  SVID/XPG defines four standard parameter numbers for mallopt,
-  normally defined in malloc.h.  Only one of these (M_MXFAST) is used
-  in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
-  so setting them has no effect. But this malloc also supports other
-  options in mallopt described below.
-*/
-#endif
-
-
-/* ---------- description of public routines ------------ */
-
-/*
-  malloc(size_t n)
-  Returns a pointer to a newly allocated chunk of at least n bytes, or null
-  if no space is available. Additionally, on failure, errno is
-  set to ENOMEM on ANSI C systems.
-
-  If n is zero, malloc returns a minumum-sized chunk. (The minimum
-  size is 16 bytes on most 32bit systems, and 24 or 32 bytes on 64bit
-  systems.)  On most systems, size_t is an unsigned type, so calls
-  with negative arguments are interpreted as requests for huge amounts
-  of space, which will often fail. The maximum supported value of n
-  differs across systems, but is in all cases less than the maximum
-  representable value of a size_t.
-*/
-#if __STD_C
-Void_t*  public_mALLOc(size_t);
-#else
-Void_t*  public_mALLOc();
-#endif
-
-/*
-  free(Void_t* p)
-  Releases the chunk of memory pointed to by p, that had been previously
-  allocated using malloc or a related routine such as realloc.
-  It has no effect if p is null. It can have arbitrary (i.e., bad!)
-  effects if p has already been freed.
-
-  Unless disabled (using mallopt), freeing very large spaces will
-  when possible, automatically trigger operations that give
-  back unused memory to the system, thus reducing program footprint.
-*/
-#if __STD_C
-void     public_fREe(Void_t*);
-#else
-void     public_fREe();
-#endif
-
-/*
-  calloc(size_t n_elements, size_t element_size);
-  Returns a pointer to n_elements * element_size bytes, with all locations
-  set to zero.
-*/
-#if __STD_C
-Void_t*  public_cALLOc(size_t, size_t);
-#else
-Void_t*  public_cALLOc();
-#endif
-
-/*
-  realloc(Void_t* p, size_t n)
-  Returns a pointer to a chunk of size n that contains the same data
-  as does chunk p up to the minimum of (n, p's size) bytes, or null
-  if no space is available. 
-
-  The returned pointer may or may not be the same as p. The algorithm
-  prefers extending p when possible, otherwise it employs the
-  equivalent of a malloc-copy-free sequence.
-
-  If p is null, realloc is equivalent to malloc.  
-
-  If space is not available, realloc returns null, errno is set (if on
-  ANSI) and p is NOT freed.
-
-  if n is for fewer bytes than already held by p, the newly unused
-  space is lopped off and freed if possible.  Unless the #define
-  REALLOC_ZERO_BYTES_FREES is set, realloc with a size argument of
-  zero (re)allocates a minimum-sized chunk.
-
-  Large chunks that were internally obtained via mmap will always
-  be reallocated using malloc-copy-free sequences unless
-  the system supports MREMAP (currently only linux).
-
-  The old unix realloc convention of allowing the last-free'd chunk
-  to be used as an argument to realloc is not supported.
-*/
-#if __STD_C
-Void_t*  public_rEALLOc(Void_t*, size_t);
-#else
-Void_t*  public_rEALLOc();
-#endif
-
-/*
-  memalign(size_t alignment, size_t n);
-  Returns a pointer to a newly allocated chunk of n bytes, aligned
-  in accord with the alignment argument.
-
-  The alignment argument should be a power of two. If the argument is
-  not a power of two, the nearest greater power is used.
-  8-byte alignment is guaranteed by normal malloc calls, so don't
-  bother calling memalign with an argument of 8 or less.
-
-  Overreliance on memalign is a sure way to fragment space.
-*/
-#if __STD_C
-Void_t*  public_mEMALIGn(size_t, size_t);
-#else
-Void_t*  public_mEMALIGn();
-#endif
-
-/*
-  valloc(size_t n);
-  Equivalent to memalign(pagesize, n), where pagesize is the page
-  size of the system. If the pagesize is unknown, 4096 is used.
-*/
-#if __STD_C
-Void_t*  public_vALLOc(size_t);
-#else
-Void_t*  public_vALLOc();
-#endif
-
-
-
-/*
-  mallopt(int parameter_number, int parameter_value)
-  Sets tunable parameters The format is to provide a
-  (parameter-number, parameter-value) pair.  mallopt then sets the
-  corresponding parameter to the argument value if it can (i.e., so
-  long as the value is meaningful), and returns 1 if successful else
-  0.  SVID/XPG/ANSI defines four standard param numbers for mallopt,
-  normally defined in malloc.h.  Only one of these (M_MXFAST) is used
-  in this malloc. The others (M_NLBLKS, M_GRAIN, M_KEEP) don't apply,
-  so setting them has no effect. But this malloc also supports four
-  other options in mallopt. See below for details.  Briefly, supported
-  parameters are as follows (listed defaults are for "typical"
-  configurations).
-
-  Symbol            param #   default    allowed param values
-  M_MXFAST          1         64         0-80  (0 disables fastbins)
-  M_TRIM_THRESHOLD -1         256*1024   any   (-1U disables trimming)
-  M_TOP_PAD        -2         0          any  
-  M_MMAP_THRESHOLD -3         256*1024   any   (or 0 if no MMAP support)
-  M_MMAP_MAX       -4         65536      any   (0 disables use of mmap)
-*/
-#if __STD_C
-int      public_mALLOPt(int, int);
-#else
-int      public_mALLOPt();
-#endif
-
-
-/*
-  mallinfo()
-  Returns (by copy) a struct containing various summary statistics:
-
-  arena:     current total non-mmapped bytes allocated from system 
-  ordblks:   the number of free chunks 
-  smblks:    the number of fastbin blocks (i.e., small chunks that
-               have been freed but not use resused or consolidated)
-  hblks:     current number of mmapped regions 
-  hblkhd:    total bytes held in mmapped regions 
-  usmblks:   the maximum total allocated space. This will be greater
-                than current total if trimming has occurred.
-  fsmblks:   total bytes held in fastbin blocks 
-  uordblks:  current total allocated space (normal or mmapped)
-  fordblks:  total free space 
-  keepcost:  the maximum number of bytes that could ideally be released
-               back to system via malloc_trim. ("ideally" means that
-               it ignores page restrictions etc.)
-
-  Because these fields are ints, but internal bookkeeping may
-  be kept as longs, the reported values may wrap around zero and 
-  thus be inaccurate.
-*/
-#if __STD_C
-struct mallinfo public_mALLINFo(void);
-#else
-struct mallinfo public_mALLINFo();
-#endif
-
-/*
-  independent_calloc(size_t n_elements, size_t element_size, Void_t* chunks[]);
-
-  independent_calloc is similar to calloc, but instead of returning a
-  single cleared space, it returns an array of pointers to n_elements
-  independent elements that can hold contents of size elem_size, each
-  of which starts out cleared, and can be independently freed,
-  realloc'ed etc. The elements are guaranteed to be adjacently
-  allocated (this is not guaranteed to occur with multiple callocs or
-  mallocs), which may also improve cache locality in some
-  applications.
-
-  The "chunks" argument is optional (i.e., may be null, which is
-  probably the most typical usage). If it is null, the returned array
-  is itself dynamically allocated and should also be freed when it is
-  no longer needed. Otherwise, the chunks array must be of at least
-  n_elements in length. It is filled in with the pointers to the
-  chunks.
-
-  In either case, independent_calloc returns this pointer array, or
-  null if the allocation failed.  If n_elements is zero and "chunks"
-  is null, it returns a chunk representing an array with zero elements
-  (which should be freed if not wanted).
-
-  Each element must be individually freed when it is no longer
-  needed. If you'd like to instead be able to free all at once, you
-  should instead use regular calloc and assign pointers into this
-  space to represent elements.  (In this case though, you cannot
-  independently free elements.)
-  
-  independent_calloc simplifies and speeds up implementations of many
-  kinds of pools.  It may also be useful when constructing large data
-  structures that initially have a fixed number of fixed-sized nodes,
-  but the number is not known at compile time, and some of the nodes
-  may later need to be freed. For example:
-
-  struct Node { int item; struct Node* next; };
-  
-  struct Node* build_list() {
-    struct Node** pool;
-    int n = read_number_of_nodes_needed();
-    if (n <= 0) return 0;
-    pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
-    if (pool == 0) die(); 
-    // organize into a linked list... 
-    struct Node* first = pool[0];
-    for (i = 0; i < n-1; ++i) 
-      pool[i]->next = pool[i+1];
-    free(pool);     // Can now free the array (or not, if it is needed later)
-    return first;
-  }
-*/
-#if __STD_C
-Void_t** public_iCALLOc(size_t, size_t, Void_t**);
-#else
-Void_t** public_iCALLOc();
-#endif
-
-/*
-  independent_comalloc(size_t n_elements, size_t sizes[], Void_t* chunks[]);
-
-  independent_comalloc allocates, all at once, a set of n_elements
-  chunks with sizes indicated in the "sizes" array.    It returns
-  an array of pointers to these elements, each of which can be
-  independently freed, realloc'ed etc. The elements are guaranteed to
-  be adjacently allocated (this is not guaranteed to occur with
-  multiple callocs or mallocs), which may also improve cache locality
-  in some applications.
-
-  The "chunks" argument is optional (i.e., may be null). If it is null
-  the returned array is itself dynamically allocated and should also
-  be freed when it is no longer needed. Otherwise, the chunks array
-  must be of at least n_elements in length. It is filled in with the
-  pointers to the chunks.
-
-  In either case, independent_comalloc returns this pointer array, or
-  null if the allocation failed.  If n_elements is zero and chunks is
-  null, it returns a chunk representing an array with zero elements
-  (which should be freed if not wanted).
-  
-  Each element must be individually freed when it is no longer
-  needed. If you'd like to instead be able to free all at once, you
-  should instead use a single regular malloc, and assign pointers at
-  particular offsets in the aggregate space. (In this case though, you 
-  cannot independently free elements.)
-
-  independent_comallac differs from independent_calloc in that each
-  element may have a different size, and also that it does not
-  automatically clear elements.
-
-  independent_comalloc can be used to speed up allocation in cases
-  where several structs or objects must always be allocated at the
-  same time.  For example:
-
-  struct Head { ... }
-  struct Foot { ... }
-
-  void send_message(char* msg) {
-    int msglen = strlen(msg);
-    size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
-    void* chunks[3];
-    if (independent_comalloc(3, sizes, chunks) == 0)
-      die();
-    struct Head* head = (struct Head*)(chunks[0]);
-    char*        body = (char*)(chunks[1]);
-    struct Foot* foot = (struct Foot*)(chunks[2]);
-    // ...
-  }
-
-  In general though, independent_comalloc is worth using only for
-  larger values of n_elements. For small values, you probably won't
-  detect enough difference from series of malloc calls to bother.
-
-  Overuse of independent_comalloc can increase overall memory usage,
-  since it cannot reuse existing noncontiguous small chunks that
-  might be available for some of the elements.
-*/
-#if __STD_C
-Void_t** public_iCOMALLOc(size_t, size_t*, Void_t**);
-#else
-Void_t** public_iCOMALLOc();
-#endif
-
-
-/*
-  pvalloc(size_t n);
-  Equivalent to valloc(minimum-page-that-holds(n)), that is,
-  round up n to nearest pagesize.
- */
-#if __STD_C
-Void_t*  public_pVALLOc(size_t);
-#else
-Void_t*  public_pVALLOc();
-#endif
-
-/*
-  cfree(Void_t* p);
-  Equivalent to free(p).
-
-  cfree is needed/defined on some systems that pair it with calloc,
-  for odd historical reasons (such as: cfree is used in example 
-  code in the first edition of K&R).
-*/
-#if __STD_C
-void     public_cFREe(Void_t*);
-#else
-void     public_cFREe();
-#endif
-
-/*
-  malloc_trim(size_t pad);
-
-  If possible, gives memory back to the system (via negative
-  arguments to sbrk) if there is unused memory at the `high' end of
-  the malloc pool. You can call this after freeing large blocks of
-  memory to potentially reduce the system-level memory requirements
-  of a program. However, it cannot guarantee to reduce memory. Under
-  some allocation patterns, some large free blocks of memory will be
-  locked between two used chunks, so they cannot be given back to
-  the system.
-  
-  The `pad' argument to malloc_trim represents the amount of free
-  trailing space to leave untrimmed. If this argument is zero,
-  only the minimum amount of memory to maintain internal data
-  structures will be left (one page or less). Non-zero arguments
-  can be supplied to maintain enough trailing space to service
-  future expected allocations without having to re-obtain memory
-  from the system.
-  
-  Malloc_trim returns 1 if it actually released any memory, else 0.
-  On systems that do not support "negative sbrks", it will always
-  rreturn 0.
-*/
-#if __STD_C
-int      public_mTRIm(size_t);
-#else
-int      public_mTRIm();
-#endif
-
-/*
-  malloc_usable_size(Void_t* p);
-
-  Returns the number of bytes you can actually use in
-  an allocated chunk, which may be more than you requested (although
-  often not) due to alignment and minimum size constraints.
-  You can use this many bytes without worrying about
-  overwriting other allocated objects. This is not a particularly great
-  programming practice. malloc_usable_size can be more useful in
-  debugging and assertions, for example:
-
-  p = malloc(n);
-  assert(malloc_usable_size(p) >= 256);
-
-*/
-#if __STD_C
-size_t   public_mUSABLe(Void_t*);
-#else
-size_t   public_mUSABLe();
-#endif
-
-/*
-  malloc_stats();
-  Prints on stderr the amount of space obtained from the system (both
-  via sbrk and mmap), the maximum amount (which may be more than
-  current if malloc_trim and/or munmap got called), and the current
-  number of bytes allocated via malloc (or realloc, etc) but not yet
-  freed. Note that this is the number of bytes allocated, not the
-  number requested. It will be larger than the number requested
-  because of alignment and bookkeeping overhead. Because it includes
-  alignment wastage as being in use, this figure may be greater than
-  zero even when no user-level chunks are allocated.
-
-  The reported current and maximum system memory can be inaccurate if
-  a program makes other calls to system memory allocation functions
-  (normally sbrk) outside of malloc.
-
-  malloc_stats prints only the most commonly interesting statistics.
-  More information can be obtained by calling mallinfo.
-
-*/
-#if __STD_C
-void     public_mSTATs();
-#else
-void     public_mSTATs();
-#endif
-
-/* mallopt tuning options */
-
-/*
-  M_MXFAST is the maximum request size used for "fastbins", special bins
-  that hold returned chunks without consolidating their spaces. This
-  enables future requests for chunks of the same size to be handled
-  very quickly, but can increase fragmentation, and thus increase the
-  overall memory footprint of a program.
-
-  This malloc manages fastbins very conservatively yet still
-  efficiently, so fragmentation is rarely a problem for values less
-  than or equal to the default.  The maximum supported value of MXFAST
-  is 80. You wouldn't want it any higher than this anyway.  Fastbins
-  are designed especially for use with many small structs, objects or
-  strings -- the default handles structs/objects/arrays with sizes up
-  to 16 4byte fields, or small strings representing words, tokens,
-  etc. Using fastbins for larger objects normally worsens
-  fragmentation without improving speed.
-
-  M_MXFAST is set in REQUEST size units. It is internally used in
-  chunksize units, which adds padding and alignment.  You can reduce
-  M_MXFAST to 0 to disable all use of fastbins.  This causes the malloc
-  algorithm to be a closer approximation of fifo-best-fit in all cases,
-  not just for larger requests, but will generally cause it to be
-  slower.
-*/
-
-
-/* M_MXFAST is a standard SVID/XPG tuning option, usually listed in malloc.h */
-#ifndef M_MXFAST
-#define M_MXFAST            1    
-#endif
-
-#ifndef DEFAULT_MXFAST
-#define DEFAULT_MXFAST     64
-#endif
-
-
-/*
-  M_TRIM_THRESHOLD is the maximum amount of unused top-most memory
-  to keep before releasing via malloc_trim in free().
-
-  Automatic trimming is mainly useful in long-lived programs.
-  Because trimming via sbrk can be slow on some systems, and can
-  sometimes be wasteful (in cases where programs immediately
-  afterward allocate more large chunks) the value should be high
-  enough so that your overall system performance would improve by
-  releasing this much memory.
-
-  The trim threshold and the mmap control parameters (see below)
-  can be traded off with one another. Trimming and mmapping are
-  two different ways of releasing unused memory back to the
-  system. Between these two, it is often possible to keep
-  system-level demands of a long-lived program down to a bare
-  minimum. For example, in one test suite of sessions measuring
-  the XF86 X server on Linux, using a trim threshold of 128K and a
-  mmap threshold of 192K led to near-minimal long term resource
-  consumption.
-
-  If you are using this malloc in a long-lived program, it should
-  pay to experiment with these values.  As a rough guide, you
-  might set to a value close to the average size of a process
-  (program) running on your system.  Releasing this much memory
-  would allow such a process to run in memory.  Generally, it's
-  worth it to tune for trimming rather tham memory mapping when a
-  program undergoes phases where several large chunks are
-  allocated and released in ways that can reuse each other's
-  storage, perhaps mixed with phases where there are no such
-  chunks at all.  And in well-behaved long-lived programs,
-  controlling release of large blocks via trimming versus mapping
-  is usually faster.
-
-  However, in most programs, these parameters serve mainly as
-  protection against the system-level effects of carrying around
-  massive amounts of unneeded memory. Since frequent calls to
-  sbrk, mmap, and munmap otherwise degrade performance, the default
-  parameters are set to relatively high values that serve only as
-  safeguards.
-
-  The trim value must be greater than page size to have any useful
-  effect.  To disable trimming completely, you can set to 
-  (unsigned long)(-1)
-
-  Trim settings interact with fastbin (MXFAST) settings: Unless
-  TRIM_FASTBINS is defined, automatic trimming never takes place upon
-  freeing a chunk with size less than or equal to MXFAST. Trimming is
-  instead delayed until subsequent freeing of larger chunks. However,
-  you can still force an attempted trim by calling malloc_trim.
-
-  Also, trimming is not generally possible in cases where
-  the main arena is obtained via mmap.
-
-  Note that the trick some people use of mallocing a huge space and
-  then freeing it at program startup, in an attempt to reserve system
-  memory, doesn't have the intended effect under automatic trimming,
-  since that memory will immediately be returned to the system.
-*/
-
-#define M_TRIM_THRESHOLD       -1
-
-#ifndef DEFAULT_TRIM_THRESHOLD
-#define DEFAULT_TRIM_THRESHOLD (256 * 1024)
-#endif
-
-/*
-  M_TOP_PAD is the amount of extra `padding' space to allocate or
-  retain whenever sbrk is called. It is used in two ways internally:
-
-  * When sbrk is called to extend the top of the arena to satisfy
-  a new malloc request, this much padding is added to the sbrk
-  request.
-
-  * When malloc_trim is called automatically from free(),
-  it is used as the `pad' argument.
-
-  In both cases, the actual amount of padding is rounded
-  so that the end of the arena is always a system page boundary.
-
-  The main reason for using padding is to avoid calling sbrk so
-  often. Having even a small pad greatly reduces the likelihood
-  that nearly every malloc request during program start-up (or
-  after trimming) will invoke sbrk, which needlessly wastes
-  time.
-
-  Automatic rounding-up to page-size units is normally sufficient
-  to avoid measurable overhead, so the default is 0.  However, in
-  systems where sbrk is relatively slow, it can pay to increase
-  this value, at the expense of carrying around more memory than
-  the program needs.
-*/
-
-#define M_TOP_PAD              -2
-
-#ifndef DEFAULT_TOP_PAD
-#define DEFAULT_TOP_PAD        (0)
-#endif
-
-/*
-  M_MMAP_THRESHOLD is the request size threshold for using mmap()
-  to service a request. Requests of at least this size that cannot
-  be allocated using already-existing space will be serviced via mmap.
-  (If enough normal freed space already exists it is used instead.)
-
-  Using mmap segregates relatively large chunks of memory so that
-  they can be individually obtained and released from the host
-  system. A request serviced through mmap is never reused by any
-  other request (at least not directly; the system may just so
-  happen to remap successive requests to the same locations).
-
-  Segregating space in this way has the benefits that:
-
-   1. Mmapped space can ALWAYS be individually released back 
-      to the system, which helps keep the system level memory 
-      demands of a long-lived program low. 
-   2. Mapped memory can never become `locked' between
-      other chunks, as can happen with normally allocated chunks, which
-      means that even trimming via malloc_trim would not release them.
-   3. On some systems with "holes" in address spaces, mmap can obtain
-      memory that sbrk cannot.
-
-  However, it has the disadvantages that:
-
-   1. The space cannot be reclaimed, consolidated, and then
-      used to service later requests, as happens with normal chunks.
-   2. It can lead to more wastage because of mmap page alignment
-      requirements
-   3. It causes malloc performance to be more dependent on host
-      system memory management support routines which may vary in
-      implementation quality and may impose arbitrary
-      limitations. Generally, servicing a request via normal
-      malloc steps is faster than going through a system's mmap.
-
-  The advantages of mmap nearly always outweigh disadvantages for
-  "large" chunks, but the value of "large" varies across systems.  The
-  default is an empirically derived value that works well in most
-  systems.
-*/
-
-#define M_MMAP_THRESHOLD      -3
-
-#ifndef DEFAULT_MMAP_THRESHOLD
-#define DEFAULT_MMAP_THRESHOLD (256 * 1024)
-#endif
-
-/*
-  M_MMAP_MAX is the maximum number of requests to simultaneously
-  service using mmap. This parameter exists because
-. Some systems have a limited number of internal tables for
-  use by mmap, and using more than a few of them may degrade
-  performance.
-
-  The default is set to a value that serves only as a safeguard.
-  Setting to 0 disables use of mmap for servicing large requests.  If
-  HAVE_MMAP is not set, the default value is 0, and attempts to set it
-  to non-zero values in mallopt will fail.
-*/
-
-#define M_MMAP_MAX             -4
-
-#ifndef DEFAULT_MMAP_MAX
-#if HAVE_MMAP
-#define DEFAULT_MMAP_MAX       (65536)
-#else
-#define DEFAULT_MMAP_MAX       (0)
-#endif
-#endif
-
-#ifdef __cplusplus
-};  /* end of extern "C" */
-#endif
-
-
-/* RN XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX */
-#endif 
-
-/* 
-  ========================================================================
-  To make a fully customizable malloc.h header file, cut everything
-  above this line, put into file malloc.h, edit to suit, and #include it 
-  on the next line, as well as in programs that use this malloc.
-  ========================================================================
-*/
-
-/* #include "malloc.h" */
-
-/* --------------------- public wrappers ---------------------- */
-
-#ifdef USE_PUBLIC_MALLOC_WRAPPERS
-
-/* Declare all routines as internal */
-#if __STD_C
-static Void_t*  mALLOc(size_t);
-static void     fREe(Void_t*);
-static Void_t*  rEALLOc(Void_t*, size_t);
-static Void_t*  mEMALIGn(size_t, size_t);
-static Void_t*  vALLOc(size_t);
-static Void_t*  pVALLOc(size_t);
-static Void_t*  cALLOc(size_t, size_t);
-static Void_t** iCALLOc(size_t, size_t, Void_t**);
-static Void_t** iCOMALLOc(size_t, size_t*, Void_t**);
-static void     cFREe(Void_t*);
-static int      mTRIm(size_t);
-static size_t   mUSABLe(Void_t*);
-static void     mSTATs();
-static int      mALLOPt(int, int);
-static struct mallinfo mALLINFo(void);
-#else
-static Void_t*  mALLOc();
-static void     fREe();
-static Void_t*  rEALLOc();
-static Void_t*  mEMALIGn();
-static Void_t*  vALLOc();
-static Void_t*  pVALLOc();
-static Void_t*  cALLOc();
-static Void_t** iCALLOc();
-static Void_t** iCOMALLOc();
-static void     cFREe();
-static int      mTRIm();
-static size_t   mUSABLe();
-static void     mSTATs();
-static int      mALLOPt();
-static struct mallinfo mALLINFo();
-#endif
-
-/*
-  MALLOC_PREACTION and MALLOC_POSTACTION should be
-  defined to return 0 on success, and nonzero on failure.
-  The return value of MALLOC_POSTACTION is currently ignored
-  in wrapper functions since there is no reasonable default
-  action to take on failure.
-*/
-
-
-#ifdef USE_MALLOC_LOCK
-
-#ifdef WIN32
-
-static int mALLOC_MUTEx;
-#define MALLOC_PREACTION   slwait(&mALLOC_MUTEx)
-#define MALLOC_POSTACTION  slrelease(&mALLOC_MUTEx)
-
-#else
-
-#include <pthread.h>
-
-static pthread_mutex_t mALLOC_MUTEx = PTHREAD_MUTEX_INITIALIZER;
-
-#define MALLOC_PREACTION   pthread_mutex_lock(&mALLOC_MUTEx)
-#define MALLOC_POSTACTION  pthread_mutex_unlock(&mALLOC_MUTEx)
-
-#endif /* USE_MALLOC_LOCK */
-
-#else
-
-/* Substitute anything you like for these */
-
-#define MALLOC_PREACTION   (0)
-#define MALLOC_POSTACTION  (0)
-
-#endif
-
-Void_t* public_mALLOc(size_t bytes) {
-  Void_t* m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = mALLOc(bytes);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-void public_fREe(Void_t* m) {
-  if (MALLOC_PREACTION != 0) {
-    return;
-  }
-  fREe(m);
-  if (MALLOC_POSTACTION != 0) {
-  }
-}
-
-Void_t* public_rEALLOc(Void_t* m, size_t bytes) {
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = rEALLOc(m, bytes);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-Void_t* public_mEMALIGn(size_t alignment, size_t bytes) {
-  Void_t* m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = mEMALIGn(alignment, bytes);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-Void_t* public_vALLOc(size_t bytes) {
-  Void_t* m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = vALLOc(bytes);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-Void_t* public_pVALLOc(size_t bytes) {
-  Void_t* m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = pVALLOc(bytes);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-Void_t* public_cALLOc(size_t n, size_t elem_size) {
-  Void_t* m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = cALLOc(n, elem_size);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-
-Void_t** public_iCALLOc(size_t n, size_t elem_size, Void_t** chunks) {
-  Void_t** m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = iCALLOc(n, elem_size, chunks);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-Void_t** public_iCOMALLOc(size_t n, size_t sizes[], Void_t** chunks) {
-  Void_t** m;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  m = iCOMALLOc(n, sizes, chunks);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-void public_cFREe(Void_t* m) {
-  if (MALLOC_PREACTION != 0) {
-    return;
-  }
-  cFREe(m);
-  if (MALLOC_POSTACTION != 0) {
-  }
-}
-
-int public_mTRIm(size_t s) {
-  int result;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  result = mTRIm(s);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return result;
-}
-
-size_t public_mUSABLe(Void_t* m) {
-  size_t result;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  result = mUSABLe(m);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return result;
-}
-
-void public_mSTATs() {
-  if (MALLOC_PREACTION != 0) {
-    return;
-  }
-  mSTATs();
-  if (MALLOC_POSTACTION != 0) {
-  }
-}
-
-struct mallinfo public_mALLINFo() {
-  struct mallinfo m;
-  if (MALLOC_PREACTION != 0) {
-    struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
-    return nm;
-  }
-  m = mALLINFo();
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return m;
-}
-
-int public_mALLOPt(int p, int v) {
-  int result;
-  if (MALLOC_PREACTION != 0) {
-    return 0;
-  }
-  result = mALLOPt(p, v);
-  if (MALLOC_POSTACTION != 0) {
-  }
-  return result;
-}
-
-#endif
-
-
-
-/* ------------- Optional versions of memcopy ---------------- */
-
-
-#if USE_MEMCPY
-
-/* 
-  Note: memcpy is ONLY invoked with non-overlapping regions,
-  so the (usually slower) memmove is not needed.
-*/
-
-#define MALLOC_COPY(dest, src, nbytes)  memcpy(dest, src, nbytes)
-#define MALLOC_ZERO(dest, nbytes)       memset(dest, 0,   nbytes)
-
-#else /* !USE_MEMCPY */
-
-/* Use Duff's device for good zeroing/copying performance. */
-
-#define MALLOC_ZERO(charp, nbytes)                                            \
-do {                                                                          \
-  INTERNAL_SIZE_T* mzp = (INTERNAL_SIZE_T*)(charp);                           \
-  CHUNK_SIZE_T  mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T);                     \
-  long mcn;                                                                   \
-  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
-  switch (mctmp) {                                                            \
-    case 0: for(;;) { *mzp++ = 0;                                             \
-    case 7:           *mzp++ = 0;                                             \
-    case 6:           *mzp++ = 0;                                             \
-    case 5:           *mzp++ = 0;                                             \
-    case 4:           *mzp++ = 0;                                             \
-    case 3:           *mzp++ = 0;                                             \
-    case 2:           *mzp++ = 0;                                             \
-    case 1:           *mzp++ = 0; if(mcn <= 0) break; mcn--; }                \
-  }                                                                           \
-} while(0)
-
-#define MALLOC_COPY(dest,src,nbytes)                                          \
-do {                                                                          \
-  INTERNAL_SIZE_T* mcsrc = (INTERNAL_SIZE_T*) src;                            \
-  INTERNAL_SIZE_T* mcdst = (INTERNAL_SIZE_T*) dest;                           \
-  CHUNK_SIZE_T  mctmp = (nbytes)/sizeof(INTERNAL_SIZE_T);                     \
-  long mcn;                                                                   \
-  if (mctmp < 8) mcn = 0; else { mcn = (mctmp-1)/8; mctmp %= 8; }             \
-  switch (mctmp) {                                                            \
-    case 0: for(;;) { *mcdst++ = *mcsrc++;                                    \
-    case 7:           *mcdst++ = *mcsrc++;                                    \
-    case 6:           *mcdst++ = *mcsrc++;                                    \
-    case 5:           *mcdst++ = *mcsrc++;                                    \
-    case 4:           *mcdst++ = *mcsrc++;                                    \
-    case 3:           *mcdst++ = *mcsrc++;                                    \
-    case 2:           *mcdst++ = *mcsrc++;                                    \
-    case 1:           *mcdst++ = *mcsrc++; if(mcn <= 0) break; mcn--; }       \
-  }                                                                           \
-} while(0)
-
-#endif
-
-/* ------------------ MMAP support ------------------  */
-
-
-#if HAVE_MMAP
-
-#ifndef LACKS_FCNTL_H
-#include <fcntl.h>
-#endif
-
-#ifndef LACKS_SYS_MMAN_H
-#include <sys/mman.h>
-#endif
-
-#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
-#define MAP_ANONYMOUS MAP_ANON
-#endif
-
-/* 
-   Nearly all versions of mmap support MAP_ANONYMOUS, 
-   so the following is unlikely to be needed, but is
-   supplied just in case.
-*/
-
-#ifndef MAP_ANONYMOUS
-
-static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
-
-#define MMAP(addr, size, prot, flags) ((dev_zero_fd < 0) ? \
- (dev_zero_fd = open("/dev/zero", O_RDWR), \
-  mmap((addr), (size), (prot), (flags), dev_zero_fd, 0)) : \
-   mmap((addr), (size), (prot), (flags), dev_zero_fd, 0))
-
-#else
-
-#define MMAP(addr, size, prot, flags) \
- (mmap((addr), (size), (prot), (flags)|MAP_ANONYMOUS, -1, 0))
-
-#endif
-
-
-#endif /* HAVE_MMAP */
-
-
-/*
-  -----------------------  Chunk representations -----------------------
-*/
-
-
-/*
-  This struct declaration is misleading (but accurate and necessary).
-  It declares a "view" into memory allowing access to necessary
-  fields at known offsets from a given base. See explanation below.
-*/
-
-struct malloc_chunk {
-
-  INTERNAL_SIZE_T      prev_size;  /* Size of previous chunk (if free).  */
-  INTERNAL_SIZE_T      size;       /* Size in bytes, including overhead. */
-
-  struct malloc_chunk* fd;         /* double links -- used only if free. */
-  struct malloc_chunk* bk;
-};
-
-
-typedef struct malloc_chunk* mchunkptr;
-
-/*
-   malloc_chunk details:
-
-    (The following includes lightly edited explanations by Colin Plumb.)
-
-    Chunks of memory are maintained using a `boundary tag' method as
-    described in e.g., Knuth or Standish.  (See the paper by Paul
-    Wilson ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a
-    survey of such techniques.)  Sizes of free chunks are stored both
-    in the front of each chunk and at the end.  This makes
-    consolidating fragmented chunks into bigger chunks very fast.  The
-    size fields also hold bits representing whether chunks are free or
-    in use.
-
-    An allocated chunk looks like this:
-
-
-    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Size of previous chunk, if allocated            | |
-            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Size of chunk, in bytes                         |P|
-      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             User data starts here...                          .
-            .                                                               .
-            .             (malloc_usable_space() bytes)                     .
-            .                                                               |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Size of chunk                                     |
-            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-
-    Where "chunk" is the front of the chunk for the purpose of most of
-    the malloc code, but "mem" is the pointer that is returned to the
-    user.  "Nextchunk" is the beginning of the next contiguous chunk.
-
-    Chunks always begin on even word boundries, so the mem portion
-    (which is returned to the user) is also on an even word boundary, and
-    thus at least double-word aligned.
-
-    Free chunks are stored in circular doubly-linked lists, and look like this:
-
-    chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Size of previous chunk                            |
-            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-    `head:' |             Size of chunk, in bytes                         |P|
-      mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Forward pointer to next chunk in list             |
-            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Back pointer to previous chunk in list            |
-            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-            |             Unused space (may be 0 bytes long)                .
-            .                                                               .
-            .                                                               |
-nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-    `foot:' |             Size of chunk, in bytes                           |
-            +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
-
-    The P (PREV_INUSE) bit, stored in the unused low-order bit of the
-    chunk size (which is always a multiple of two words), is an in-use
-    bit for the *previous* chunk.  If that bit is *clear*, then the
-    word before the current chunk size contains the previous chunk
-    size, and can be used to find the front of the previous chunk.
-    The very first chunk allocated always has this bit set,
-    preventing access to non-existent (or non-owned) memory. If
-    prev_inuse is set for any given chunk, then you CANNOT determine
-    the size of the previous chunk, and might even get a memory
-    addressing fault when trying to do so.
-
-    Note that the `foot' of the current chunk is actually represented
-    as the prev_size of the NEXT chunk. This makes it easier to
-    deal with alignments etc but can be very confusing when trying
-    to extend or adapt this code.
-
-    The two exceptions to all this are
-
-     1. The special chunk `top' doesn't bother using the
-        trailing size field since there is no next contiguous chunk
-        that would have to index off it. After initialization, `top'
-        is forced to always exist.  If it would become less than
-        MINSIZE bytes long, it is replenished.
-
-     2. Chunks allocated via mmap, which have the second-lowest-order
-        bit (IS_MMAPPED) set in their size fields.  Because they are
-        allocated one-by-one, each must contain its own trailing size field.
-
-*/
-
-/*
-  ---------- Size and alignment checks and conversions ----------
-*/
-
-/* conversion from malloc headers to user pointers, and back */
-
-#define chunk2mem(p)   ((Void_t*)((char*)(p) + 2*SIZE_SZ))
-#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - 2*SIZE_SZ))
-
-/* The smallest possible chunk */
-#define MIN_CHUNK_SIZE        (sizeof(struct malloc_chunk))
-
-/* The smallest size we can malloc is an aligned minimal chunk */
-
-#define MINSIZE  \
-  (CHUNK_SIZE_T)(((MIN_CHUNK_SIZE+MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK))
-
-/* Check if m has acceptable alignment */
-
-#define aligned_OK(m)  (((PTR_UINT)((m)) & (MALLOC_ALIGN_MASK)) == 0)
-
-
-/* 
-   Check if a request is so large that it would wrap around zero when
-   padded and aligned. To simplify some other code, the bound is made
-   low enough so that adding MINSIZE will also not wrap around sero.
-*/
-
-#define REQUEST_OUT_OF_RANGE(req)                                 \
-  ((CHUNK_SIZE_T)(req) >=                                        \
-   (CHUNK_SIZE_T)(INTERNAL_SIZE_T)(-2 * MINSIZE))    
-
-/* pad request bytes into a usable size -- internal version */
-
-#define request2size(req)                                         \
-  (((req) + SIZE_SZ + MALLOC_ALIGN_MASK < MINSIZE)  ?             \
-   MINSIZE :                                                      \
-   ((req) + SIZE_SZ + MALLOC_ALIGN_MASK) & ~MALLOC_ALIGN_MASK)
-
-/*  Same, except also perform argument check */
-
-#define checked_request2size(req, sz)                             \
-  if (REQUEST_OUT_OF_RANGE(req)) {                                \
-    MALLOC_FAILURE_ACTION;                                        \
-    return 0;                                                     \
-  }                                                               \
-  (sz) = request2size(req);                                              
-
-/*
-  --------------- Physical chunk operations ---------------
-*/
-
-
-/* size field is or'ed with PREV_INUSE when previous adjacent chunk in use */
-#define PREV_INUSE 0x1
-
-/* extract inuse bit of previous chunk */
-#define prev_inuse(p)       ((p)->size & PREV_INUSE)
-
-
-/* size field is or'ed with IS_MMAPPED if the chunk was obtained with mmap() */
-#define IS_MMAPPED 0x2
-
-/* check for mmap()'ed chunk */
-#define chunk_is_mmapped(p) ((p)->size & IS_MMAPPED)
-
-/* 
-  Bits to mask off when extracting size 
-
-  Note: IS_MMAPPED is intentionally not masked off from size field in
-  macros for which mmapped chunks should never be seen. This should
-  cause helpful core dumps to occur if it is tried by accident by
-  people extending or adapting this malloc.
-*/
-#define SIZE_BITS (PREV_INUSE|IS_MMAPPED)
-
-/* Get size, ignoring use bits */
-#define chunksize(p)         ((p)->size & ~(SIZE_BITS))
-
-
-/* Ptr to next physical malloc_chunk. */
-#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->size & ~PREV_INUSE) ))
-
-/* Ptr to previous physical malloc_chunk */
-#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_size) ))
-
-/* Treat space at ptr + offset as a chunk */
-#define chunk_at_offset(p, s)  ((mchunkptr)(((char*)(p)) + (s)))
-
-/* extract p's inuse bit */
-#define inuse(p)\
-((((mchunkptr)(((char*)(p))+((p)->size & ~PREV_INUSE)))->size) & PREV_INUSE)
-
-/* set/clear chunk as being inuse without otherwise disturbing */
-#define set_inuse(p)\
-((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size |= PREV_INUSE
-
-#define clear_inuse(p)\
-((mchunkptr)(((char*)(p)) + ((p)->size & ~PREV_INUSE)))->size &= ~(PREV_INUSE)
-
-
-/* check/set/clear inuse bits in known places */
-#define inuse_bit_at_offset(p, s)\
- (((mchunkptr)(((char*)(p)) + (s)))->size & PREV_INUSE)
-
-#define set_inuse_bit_at_offset(p, s)\
- (((mchunkptr)(((char*)(p)) + (s)))->size |= PREV_INUSE)
-
-#define clear_inuse_bit_at_offset(p, s)\
- (((mchunkptr)(((char*)(p)) + (s)))->size &= ~(PREV_INUSE))
-
-
-/* Set size at head, without disturbing its use bit */
-#define set_head_size(p, s)  ((p)->size = (((p)->size & PREV_INUSE) | (s)))
-
-/* Set size/use field */
-#define set_head(p, s)       ((p)->size = (s))
-
-/* Set size at footer (only when chunk is not in use) */
-#define set_foot(p, s)       (((mchunkptr)((char*)(p) + (s)))->prev_size = (s))
-
-
-/*
-  -------------------- Internal data structures --------------------
-
-   All internal state is held in an instance of malloc_state defined
-   below. There are no other static variables, except in two optional
-   cases: 
-   * If USE_MALLOC_LOCK is defined, the mALLOC_MUTEx declared above. 
-   * If HAVE_MMAP is true, but mmap doesn't support
-     MAP_ANONYMOUS, a dummy file descriptor for mmap.
-
-   Beware of lots of tricks that minimize the total bookkeeping space
-   requirements. The result is a little over 1K bytes (for 4byte
-   pointers and size_t.)
-*/
-
-/*
-  Bins
-
-    An array of bin headers for free chunks. Each bin is doubly
-    linked.  The bins are approximately proportionally (log) spaced.
-    There are a lot of these bins (128). This may look excessive, but
-    works very well in practice.  Most bins hold sizes that are
-    unusual as malloc request sizes, but are more usual for fragments
-    and consolidated sets of chunks, which is what these bins hold, so
-    they can be found quickly.  All procedures maintain the invariant
-    that no consolidated chunk physically borders another one, so each
-    chunk in a list is known to be preceeded and followed by either
-    inuse chunks or the ends of memory.
-
-    Chunks in bins are kept in size order, with ties going to the
-    approximately least recently used chunk. Ordering isn't needed
-    for the small bins, which all contain the same-sized chunks, but
-    facilitates best-fit allocation for larger chunks. These lists
-    are just sequential. Keeping them in order almost never requires
-    enough traversal to warrant using fancier ordered data
-    structures.  
-
-    Chunks of the same size are linked with the most
-    recently freed at the front, and allocations are taken from the
-    back.  This results in LRU (FIFO) allocation order, which tends
-    to give each chunk an equal opportunity to be consolidated with
-    adjacent freed chunks, resulting in larger free chunks and less
-    fragmentation.
-
-    To simplify use in double-linked lists, each bin header acts
-    as a malloc_chunk. This avoids special-casing for headers.
-    But to conserve space and improve locality, we allocate
-    only the fd/bk pointers of bins, and then use repositioning tricks
-    to treat these as the fields of a malloc_chunk*.  
-*/
-
-typedef struct malloc_chunk* mbinptr;
-
-/* addressing -- note that bin_at(0) does not exist */
-#define bin_at(m, i) ((mbinptr)((char*)&((m)->bins[(i)<<1]) - (SIZE_SZ<<1)))
-
-/* analog of ++bin */
-#define next_bin(b)  ((mbinptr)((char*)(b) + (sizeof(mchunkptr)<<1)))
-
-/* Reminders about list directionality within bins */
-#define first(b)     ((b)->fd)
-#define last(b)      ((b)->bk)
-
-/* Take a chunk off a bin list */
-#define unlink(P, BK, FD) {                                            \
-  FD = P->fd;                                                          \
-  BK = P->bk;                                                          \
-  FD->bk = BK;                                                         \
-  BK->fd = FD;                                                         \
-}
-
-/*
-  Indexing
-
-    Bins for sizes < 512 bytes contain chunks of all the same size, spaced
-    8 bytes apart. Larger bins are approximately logarithmically spaced:
-
-    64 bins of size       8
-    32 bins of size      64
-    16 bins of size     512
-     8 bins of size    4096
-     4 bins of size   32768
-     2 bins of size  262144
-     1 bin  of size what's left
-
-    The bins top out around 1MB because we expect to service large
-    requests via mmap.
-*/
-
-#define NBINS              96
-#define NSMALLBINS         32
-#define SMALLBIN_WIDTH      8
-#define MIN_LARGE_SIZE    256
-
-#define in_smallbin_range(sz)  \
-  ((CHUNK_SIZE_T)(sz) < (CHUNK_SIZE_T)MIN_LARGE_SIZE)
-
-#define smallbin_index(sz)     (((unsigned)(sz)) >> 3)
-
-/*
-  Compute index for size. We expect this to be inlined when
-  compiled with optimization, else not, which works out well.
-*/
-static int largebin_index(unsigned int sz) {
-  unsigned int  x = sz >> SMALLBIN_WIDTH; 
-  unsigned int m;            /* bit position of highest set bit of m */
-
-  if (x >= 0x10000) return NBINS-1;
-
-  /* On intel, use BSRL instruction to find highest bit */
-#if defined(__GNUC__) && defined(i386)
-
-  __asm__("bsrl %1,%0\n\t"
-          : "=r" (m) 
-          : "g"  (x));
-
-#else
-  {
-    /*
-      Based on branch-free nlz algorithm in chapter 5 of Henry
-      S. Warren Jr's book "Hacker's Delight".
-    */
-
-    unsigned int n = ((x - 0x100) >> 16) & 8;
-    x <<= n; 
-    m = ((x - 0x1000) >> 16) & 4;
-    n += m; 
-    x <<= m; 
-    m = ((x - 0x4000) >> 16) & 2;
-    n += m; 
-    x = (x << m) >> 14;
-    m = 13 - n + (x & ~(x>>1));
-  }
-#endif
-
-  /* Use next 2 bits to create finer-granularity bins */
-  return NSMALLBINS + (m << 2) + ((sz >> (m + 6)) & 3);
-}
-
-#define bin_index(sz) \
- ((in_smallbin_range(sz)) ? smallbin_index(sz) : largebin_index(sz))
-
-/*
-  FIRST_SORTED_BIN_SIZE is the chunk size corresponding to the
-  first bin that is maintained in sorted order. This must
-  be the smallest size corresponding to a given bin.
-
-  Normally, this should be MIN_LARGE_SIZE. But you can weaken
-  best fit guarantees to sometimes speed up malloc by increasing value.
-  Doing this means that malloc may choose a chunk that is 
-  non-best-fitting by up to the width of the bin.
-
-  Some useful cutoff values:
-      512 - all bins sorted
-     2560 - leaves bins <=     64 bytes wide unsorted  
-    12288 - leaves bins <=    512 bytes wide unsorted
-    65536 - leaves bins <=   4096 bytes wide unsorted
-   262144 - leaves bins <=  32768 bytes wide unsorted
-       -1 - no bins sorted (not recommended!)
-*/
-
-#define FIRST_SORTED_BIN_SIZE MIN_LARGE_SIZE 
-/* #define FIRST_SORTED_BIN_SIZE 65536 */
-
-/*
-  Unsorted chunks
-
-    All remainders from chunk splits, as well as all returned chunks,
-    are first placed in the "unsorted" bin. They are then placed
-    in regular bins after malloc gives them ONE chance to be used before
-    binning. So, basically, the unsorted_chunks list acts as a queue,
-    with chunks being placed on it in free (and malloc_consolidate),
-    and taken off (to be either used or placed in bins) in malloc.
-*/
-
-/* The otherwise unindexable 1-bin is used to hold unsorted chunks. */
-#define unsorted_chunks(M)          (bin_at(M, 1))
-
-/*
-  Top
-
-    The top-most available chunk (i.e., the one bordering the end of
-    available memory) is treated specially. It is never included in
-    any bin, is used only if no other chunk is available, and is
-    released back to the system if it is very large (see
-    M_TRIM_THRESHOLD).  Because top initially
-    points to its own bin with initial zero size, thus forcing
-    extension on the first malloc request, we avoid having any special
-    code in malloc to check whether it even exists yet. But we still
-    need to do so when getting memory from system, so we make
-    initial_top treat the bin as a legal but unusable chunk during the
-    interval between initialization and the first call to
-    sYSMALLOc. (This is somewhat delicate, since it relies on
-    the 2 preceding words to be zero during this interval as well.)
-*/
-
-/* Conveniently, the unsorted bin can be used as dummy top on first call */
-#define initial_top(M)              (unsorted_chunks(M))
-
-/*
-  Binmap
-
-    To help compensate for the large number of bins, a one-level index
-    structure is used for bin-by-bin searching.  `binmap' is a
-    bitvector recording whether bins are definitely empty so they can
-    be skipped over during during traversals.  The bits are NOT always
-    cleared as soon as bins are empty, but instead only
-    when they are noticed to be empty during traversal in malloc.
-*/
-
-/* Conservatively use 32 bits per map word, even if on 64bit system */
-#define BINMAPSHIFT      5
-#define BITSPERMAP       (1U << BINMAPSHIFT)
-#define BINMAPSIZE       (NBINS / BITSPERMAP)
-
-#define idx2block(i)     ((i) >> BINMAPSHIFT)
-#define idx2bit(i)       ((1U << ((i) & ((1U << BINMAPSHIFT)-1))))
-
-#define mark_bin(m,i)    ((m)->binmap[idx2block(i)] |=  idx2bit(i))
-#define unmark_bin(m,i)  ((m)->binmap[idx2block(i)] &= ~(idx2bit(i)))
-#define get_binmap(m,i)  ((m)->binmap[idx2block(i)] &   idx2bit(i))
-
-/*
-  Fastbins
-
-    An array of lists holding recently freed small chunks.  Fastbins
-    are not doubly linked.  It is faster to single-link them, and
-    since chunks are never removed from the middles of these lists,
-    double linking is not necessary. Also, unlike regular bins, they
-    are not even processed in FIFO order (they use faster LIFO) since
-    ordering doesn't much matter in the transient contexts in which
-    fastbins are normally used.
-
-    Chunks in fastbins keep their inuse bit set, so they cannot
-    be consolidated with other free chunks. malloc_consolidate
-    releases all chunks in fastbins and consolidates them with
-    other free chunks. 
-*/
-
-typedef struct malloc_chunk* mfastbinptr;
-
-/* offset 2 to use otherwise unindexable first 2 bins */
-#define fastbin_index(sz)        ((((unsigned int)(sz)) >> 3) - 2)
-
-/* The maximum fastbin request size we support */
-#define MAX_FAST_SIZE     80
-
-#define NFASTBINS  (fastbin_index(request2size(MAX_FAST_SIZE))+1)
-
-/*
-  FASTBIN_CONSOLIDATION_THRESHOLD is the size of a chunk in free()
-  that triggers automatic consolidation of possibly-surrounding
-  fastbin chunks. This is a heuristic, so the exact value should not
-  matter too much. It is defined at half the default trim threshold as a
-  compromise heuristic to only attempt consolidation if it is likely
-  to lead to trimming. However, it is not dynamically tunable, since
-  consolidation reduces fragmentation surrounding loarge chunks even 
-  if trimming is not used.
-*/
-
-#define FASTBIN_CONSOLIDATION_THRESHOLD  \
-  ((unsigned long)(DEFAULT_TRIM_THRESHOLD) >> 1)
-
-/*
-  Since the lowest 2 bits in max_fast don't matter in size comparisons, 
-  they are used as flags.
-*/
-
-/*
-  ANYCHUNKS_BIT held in max_fast indicates that there may be any
-  freed chunks at all. It is set true when entering a chunk into any
-  bin.
-*/
-
-#define ANYCHUNKS_BIT        (1U)
-
-#define have_anychunks(M)     (((M)->max_fast &  ANYCHUNKS_BIT))
-#define set_anychunks(M)      ((M)->max_fast |=  ANYCHUNKS_BIT)
-#define clear_anychunks(M)    ((M)->max_fast &= ~ANYCHUNKS_BIT)
-
-/*
-  FASTCHUNKS_BIT held in max_fast indicates that there are probably
-  some fastbin chunks. It is set true on entering a chunk into any
-  fastbin, and cleared only in malloc_consolidate.
-*/
-
-#define FASTCHUNKS_BIT        (2U)
-
-#define have_fastchunks(M)   (((M)->max_fast &  FASTCHUNKS_BIT))
-#define set_fastchunks(M)    ((M)->max_fast |=  (FASTCHUNKS_BIT|ANYCHUNKS_BIT))
-#define clear_fastchunks(M)  ((M)->max_fast &= ~(FASTCHUNKS_BIT))
-
-/* 
-   Set value of max_fast. 
-   Use impossibly small value if 0.
-*/
-
-#define set_max_fast(M, s) \
-  (M)->max_fast = (((s) == 0)? SMALLBIN_WIDTH: request2size(s)) | \
-  ((M)->max_fast &  (FASTCHUNKS_BIT|ANYCHUNKS_BIT))
-
-#define get_max_fast(M) \
-  ((M)->max_fast & ~(FASTCHUNKS_BIT | ANYCHUNKS_BIT))
-
-
-/*
-  morecore_properties is a status word holding dynamically discovered
-  or controlled properties of the morecore function
-*/
-
-#define MORECORE_CONTIGUOUS_BIT  (1U)
-
-#define contiguous(M) \
-        (((M)->morecore_properties &  MORECORE_CONTIGUOUS_BIT))
-#define noncontiguous(M) \
-        (((M)->morecore_properties &  MORECORE_CONTIGUOUS_BIT) == 0)
-#define set_contiguous(M) \
-        ((M)->morecore_properties |=  MORECORE_CONTIGUOUS_BIT)
-#define set_noncontiguous(M) \
-        ((M)->morecore_properties &= ~MORECORE_CONTIGUOUS_BIT)
-
-
-/*
-   ----------- Internal state representation and initialization -----------
-*/
-
-struct malloc_state {
-
-  /* The maximum chunk size to be eligible for fastbin */
-  INTERNAL_SIZE_T  max_fast;   /* low 2 bits used as flags */
-
-  /* Fastbins */
-  mfastbinptr      fastbins[NFASTBINS];
-
-  /* Base of the topmost chunk -- not otherwise kept in a bin */
-  mchunkptr        top;
-
-  /* The remainder from the most recent split of a small request */
-  mchunkptr        last_remainder;
-
-  /* Normal bins packed as described above */
-  mchunkptr        bins[NBINS * 2];
-
-  /* Bitmap of bins. Trailing zero map handles cases of largest binned size */
-  unsigned int     binmap[BINMAPSIZE+1];
-
-  /* Tunable parameters */
-  CHUNK_SIZE_T     trim_threshold;
-  INTERNAL_SIZE_T  top_pad;
-  INTERNAL_SIZE_T  mmap_threshold;
-
-  /* Memory map support */
-  int              n_mmaps;
-  int              n_mmaps_max;
-  int              max_n_mmaps;
-
-  /* Cache malloc_getpagesize */
-  unsigned int     pagesize;    
-
-  /* Track properties of MORECORE */
-  unsigned int     morecore_properties;
-
-  /* Statistics */
-  INTERNAL_SIZE_T  mmapped_mem;
-  INTERNAL_SIZE_T  sbrked_mem;
-  INTERNAL_SIZE_T  max_sbrked_mem;
-  INTERNAL_SIZE_T  max_mmapped_mem;
-  INTERNAL_SIZE_T  max_total_mem;
-};
-
-typedef struct malloc_state *mstate;
-
-/* 
-   There is exactly one instance of this struct in this malloc.
-   If you are adapting this malloc in a way that does NOT use a static
-   malloc_state, you MUST explicitly zero-fill it before using. This
-   malloc relies on the property that malloc_state is initialized to
-   all zeroes (as is true of C statics).
-*/
-
-static struct malloc_state av_;  /* never directly referenced */
-
-/*
-   All uses of av_ are via get_malloc_state().
-   At most one "call" to get_malloc_state is made per invocation of
-   the public versions of malloc and free, but other routines
-   that in turn invoke malloc and/or free may call more then once. 
-   Also, it is called in check* routines if DEBUG is set.
-*/
-
-#define get_malloc_state() (&(av_))
-
-/*
-  Initialize a malloc_state struct.
-
-  This is called only from within malloc_consolidate, which needs
-  be called in the same contexts anyway.  It is never called directly
-  outside of malloc_consolidate because some optimizing compilers try
-  to inline it at all call points, which turns out not to be an
-  optimization at all. (Inlining it in malloc_consolidate is fine though.)
-*/
-
-#if __STD_C
-static void malloc_init_state(mstate av)
-#else
-static void malloc_init_state(av) mstate av;
-#endif
-{
-  int     i;
-  mbinptr bin;
-  
-  /* Establish circular links for normal bins */
-  for (i = 1; i < NBINS; ++i) { 
-    bin = bin_at(av,i);
-    bin->fd = bin->bk = bin;
-  }
-
-  av->top_pad        = DEFAULT_TOP_PAD;
-  av->n_mmaps_max    = DEFAULT_MMAP_MAX;
-  av->mmap_threshold = DEFAULT_MMAP_THRESHOLD;
-  av->trim_threshold = DEFAULT_TRIM_THRESHOLD;
-
-#if MORECORE_CONTIGUOUS
-  set_contiguous(av);
-#else
-  set_noncontiguous(av);
-#endif
-
-
-  set_max_fast(av, DEFAULT_MXFAST);
-
-  av->top            = initial_top(av);
-  av->pagesize       = malloc_getpagesize;
-}
-
-/* 
-   Other internal utilities operating on mstates
-*/
-
-static Void_t*  sYSMALLOc(INTERNAL_SIZE_T, mstate);
-#ifndef MORECORE_CANNOT_TRIM
-static int      sYSTRIm(size_t, mstate);
-#endif
-static void     malloc_consolidate(mstate);
-static Void_t** iALLOc(size_t, size_t*, int, Void_t**);
-
-/*
-  Debugging support
-
-  These routines make a number of assertions about the states
-  of data structures that should be true at all times. If any
-  are not true, it's very likely that a user program has somehow
-  trashed memory. (It's also possible that there is a coding error
-  in malloc. In which case, please report it!)
-*/
-
-#if ! DEBUG
-
-#define check_chunk(P)
-#define check_free_chunk(P)
-#define check_inuse_chunk(P)
-#define check_remalloced_chunk(P,N)
-#define check_malloced_chunk(P,N)
-#define check_malloc_state()
-
-#else
-#define check_chunk(P)              do_check_chunk(P)
-#define check_free_chunk(P)         do_check_free_chunk(P)
-#define check_inuse_chunk(P)        do_check_inuse_chunk(P)
-#define check_remalloced_chunk(P,N) do_check_remalloced_chunk(P,N)
-#define check_malloced_chunk(P,N)   do_check_malloced_chunk(P,N)
-#define check_malloc_state()        do_check_malloc_state()
-
-/*
-  Properties of all chunks
-*/
-
-#if __STD_C
-static void do_check_chunk(mchunkptr p)
-#else
-static void do_check_chunk(p) mchunkptr p;
-#endif
-{
-  mstate av = get_malloc_state();
-  CHUNK_SIZE_T  sz = chunksize(p);
-  /* min and max possible addresses assuming contiguous allocation */
-  char* max_address = (char*)(av->top) + chunksize(av->top);
-  char* min_address = max_address - av->sbrked_mem;
-
-  if (!chunk_is_mmapped(p)) {
-    
-    /* Has legal address ... */
-    if (p != av->top) {
-      if (contiguous(av)) {
-        assert(((char*)p) >= min_address);
-        assert(((char*)p + sz) <= ((char*)(av->top)));
-      }
-    }
-    else {
-      /* top size is always at least MINSIZE */
-      assert((CHUNK_SIZE_T)(sz) >= MINSIZE);
-      /* top predecessor always marked inuse */
-      assert(prev_inuse(p));
-    }
-      
-  }
-  else {
-#if HAVE_MMAP
-    /* address is outside main heap  */
-    if (contiguous(av) && av->top != initial_top(av)) {
-      assert(((char*)p) < min_address || ((char*)p) > max_address);
-    }
-    /* chunk is page-aligned */
-    assert(((p->prev_size + sz) & (av->pagesize-1)) == 0);
-    /* mem is aligned */
-    assert(aligned_OK(chunk2mem(p)));
-#else
-    /* force an appropriate assert violation if debug set */
-    assert(!chunk_is_mmapped(p));
-#endif
-  }
-}
-
-/*
-  Properties of free chunks
-*/
-
-#if __STD_C
-static void do_check_free_chunk(mchunkptr p)
-#else
-static void do_check_free_chunk(p) mchunkptr p;
-#endif
-{
-  mstate av = get_malloc_state();
-
-  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
-  mchunkptr next = chunk_at_offset(p, sz);
-
-  do_check_chunk(p);
-
-  /* Chunk must claim to be free ... */
-  assert(!inuse(p));
-  assert (!chunk_is_mmapped(p));
-
-  /* Unless a special marker, must have OK fields */
-  if ((CHUNK_SIZE_T)(sz) >= MINSIZE)
-  {
-    assert((sz & MALLOC_ALIGN_MASK) == 0);
-    assert(aligned_OK(chunk2mem(p)));
-    /* ... matching footer field */
-    assert(next->prev_size == sz);
-    /* ... and is fully consolidated */
-    assert(prev_inuse(p));
-    assert (next == av->top || inuse(next));
-
-    /* ... and has minimally sane links */
-    assert(p->fd->bk == p);
-    assert(p->bk->fd == p);
-  }
-  else /* markers are always of size SIZE_SZ */
-    assert(sz == SIZE_SZ);
-}
-
-/*
-  Properties of inuse chunks
-*/
-
-#if __STD_C
-static void do_check_inuse_chunk(mchunkptr p)
-#else
-static void do_check_inuse_chunk(p) mchunkptr p;
-#endif
-{
-  mstate av = get_malloc_state();
-  mchunkptr next;
-  do_check_chunk(p);
-
-  if (chunk_is_mmapped(p))
-    return; /* mmapped chunks have no next/prev */
-
-  /* Check whether it claims to be in use ... */
-  assert(inuse(p));
-
-  next = next_chunk(p);
-
-  /* ... and is surrounded by OK chunks.
-    Since more things can be checked with free chunks than inuse ones,
-    if an inuse chunk borders them and debug is on, it's worth doing them.
-  */
-  if (!prev_inuse(p))  {
-    /* Note that we cannot even look at prev unless it is not inuse */
-    mchunkptr prv = prev_chunk(p);
-    assert(next_chunk(prv) == p);
-    do_check_free_chunk(prv);
-  }
-
-  if (next == av->top) {
-    assert(prev_inuse(next));
-    assert(chunksize(next) >= MINSIZE);
-  }
-  else if (!inuse(next))
-    do_check_free_chunk(next);
-}
-
-/*
-  Properties of chunks recycled from fastbins
-*/
-
-#if __STD_C
-static void do_check_remalloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
-#else
-static void do_check_remalloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
-#endif
-{
-  INTERNAL_SIZE_T sz = p->size & ~PREV_INUSE;
-
-  do_check_inuse_chunk(p);
-
-  /* Legal size ... */
-  assert((sz & MALLOC_ALIGN_MASK) == 0);
-  assert((CHUNK_SIZE_T)(sz) >= MINSIZE);
-  /* ... and alignment */
-  assert(aligned_OK(chunk2mem(p)));
-  /* chunk is less than MINSIZE more than request */
-  assert((long)(sz) - (long)(s) >= 0);
-  assert((long)(sz) - (long)(s + MINSIZE) < 0);
-}
-
-/*
-  Properties of nonrecycled chunks at the point they are malloced
-*/
-
-#if __STD_C
-static void do_check_malloced_chunk(mchunkptr p, INTERNAL_SIZE_T s)
-#else
-static void do_check_malloced_chunk(p, s) mchunkptr p; INTERNAL_SIZE_T s;
-#endif
-{
-  /* same as recycled case ... */
-  do_check_remalloced_chunk(p, s);
-
-  /*
-    ... plus,  must obey implementation invariant that prev_inuse is
-    always true of any allocated chunk; i.e., that each allocated
-    chunk borders either a previously allocated and still in-use
-    chunk, or the base of its memory arena. This is ensured
-    by making all allocations from the the `lowest' part of any found
-    chunk.  This does not necessarily hold however for chunks
-    recycled via fastbins.
-  */
-
-  assert(prev_inuse(p));
-}
-
-
-/*
-  Properties of malloc_state.
-
-  This may be useful for debugging malloc, as well as detecting user
-  programmer errors that somehow write into malloc_state.
-
-  If you are extending or experimenting with this malloc, you can
-  probably figure out how to hack this routine to print out or
-  display chunk addresses, sizes, bins, and other instrumentation.
-*/
-
-static void do_check_malloc_state()
-{
-  mstate av = get_malloc_state();
-  int i;
-  mchunkptr p;
-  mchunkptr q;
-  mbinptr b;
-  unsigned int binbit;
-  int empty;
-  unsigned int idx;
-  INTERNAL_SIZE_T size;
-  CHUNK_SIZE_T  total = 0;
-  int max_fast_bin;
-
-  /* internal size_t must be no wider than pointer type */
-  assert(sizeof(INTERNAL_SIZE_T) <= sizeof(char*));
-
-  /* alignment is a power of 2 */
-  assert((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-1)) == 0);
-
-  /* cannot run remaining checks until fully initialized */
-  if (av->top == 0 || av->top == initial_top(av))
-    return;
-
-  /* pagesize is a power of 2 */
-  assert((av->pagesize & (av->pagesize-1)) == 0);
-
-  /* properties of fastbins */
-
-  /* max_fast is in allowed range */
-  assert(get_max_fast(av) <= request2size(MAX_FAST_SIZE));
-
-  max_fast_bin = fastbin_index(av->max_fast);
-
-  for (i = 0; i < NFASTBINS; ++i) {
-    p = av->fastbins[i];
-
-    /* all bins past max_fast are empty */
-    if (i > max_fast_bin)
-      assert(p == 0);
-
-    while (p != 0) {
-      /* each chunk claims to be inuse */
-      do_check_inuse_chunk(p);
-      total += chunksize(p);
-      /* chunk belongs in this bin */
-      assert(fastbin_index(chunksize(p)) == i);
-      p = p->fd;
-    }
-  }
-
-  if (total != 0)
-    assert(have_fastchunks(av));
-  else if (!have_fastchunks(av))
-    assert(total == 0);
-
-  /* check normal bins */
-  for (i = 1; i < NBINS; ++i) {
-    b = bin_at(av,i);
-
-    /* binmap is accurate (except for bin 1 == unsorted_chunks) */
-    if (i >= 2) {
-      binbit = get_binmap(av,i);
-      empty = last(b) == b;
-      if (!binbit)
-        assert(empty);
-      else if (!empty)
-        assert(binbit);
-    }
-
-    for (p = last(b); p != b; p = p->bk) {
-      /* each chunk claims to be free */
-      do_check_free_chunk(p);
-      size = chunksize(p);
-      total += size;
-      if (i >= 2) {
-        /* chunk belongs in bin */
-        idx = bin_index(size);
-        assert(idx == i);
-        /* lists are sorted */
-        if ((CHUNK_SIZE_T) size >= (CHUNK_SIZE_T)(FIRST_SORTED_BIN_SIZE)) {
-          assert(p->bk == b || 
-                 (CHUNK_SIZE_T)chunksize(p->bk) >= 
-                 (CHUNK_SIZE_T)chunksize(p));
-        }
-      }
-      /* chunk is followed by a legal chain of inuse chunks */
-      for (q = next_chunk(p);
-           (q != av->top && inuse(q) && 
-             (CHUNK_SIZE_T)(chunksize(q)) >= MINSIZE);
-           q = next_chunk(q))
-        do_check_inuse_chunk(q);
-    }
-  }
-
-  /* top chunk is OK */
-  check_chunk(av->top);
-
-  /* sanity checks for statistics */
-
-  assert(total <= (CHUNK_SIZE_T)(av->max_total_mem));
-  assert(av->n_mmaps >= 0);
-  assert(av->n_mmaps <= av->max_n_mmaps);
-
-  assert((CHUNK_SIZE_T)(av->sbrked_mem) <=
-         (CHUNK_SIZE_T)(av->max_sbrked_mem));
-
-  assert((CHUNK_SIZE_T)(av->mmapped_mem) <=
-         (CHUNK_SIZE_T)(av->max_mmapped_mem));
-
-  assert((CHUNK_SIZE_T)(av->max_total_mem) >=
-         (CHUNK_SIZE_T)(av->mmapped_mem) + (CHUNK_SIZE_T)(av->sbrked_mem));
-}
-#endif
-
-
-/* ----------- Routines dealing with system allocation -------------- */
-
-/*
-  sysmalloc handles malloc cases requiring more memory from the system.
-  On entry, it is assumed that av->top does not have enough
-  space to service request for nb bytes, thus requiring that av->top
-  be extended or replaced.
-*/
-
-#if __STD_C
-static Void_t* sYSMALLOc(INTERNAL_SIZE_T nb, mstate av)
-#else
-static Void_t* sYSMALLOc(nb, av) INTERNAL_SIZE_T nb; mstate av;
-#endif
-{
-  mchunkptr       old_top;        /* incoming value of av->top */
-  INTERNAL_SIZE_T old_size;       /* its size */
-  char*           old_end;        /* its end address */
-
-  long            size;           /* arg to first MORECORE or mmap call */
-  char*           brk;            /* return value from MORECORE */
-
-  long            correction;     /* arg to 2nd MORECORE call */
-  char*           snd_brk;        /* 2nd return val */
-
-  INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
-  INTERNAL_SIZE_T end_misalign;   /* partial page left at end of new space */
-  char*           aligned_brk;    /* aligned offset into brk */
-
-  mchunkptr       p;              /* the allocated/returned chunk */
-  mchunkptr       remainder;      /* remainder from allocation */
-  CHUNK_SIZE_T    remainder_size; /* its size */
-
-  CHUNK_SIZE_T    sum;            /* for updating stats */
-
-  size_t          pagemask  = av->pagesize - 1;
-
-  /*
-    If there is space available in fastbins, consolidate and retry
-    malloc from scratch rather than getting memory from system.  This
-    can occur only if nb is in smallbin range so we didn't consolidate
-    upon entry to malloc. It is much easier to handle this case here
-    than in malloc proper.
-  */
-
-  if (have_fastchunks(av)) {
-    assert(in_smallbin_range(nb));
-    malloc_consolidate(av);
-    return mALLOc(nb - MALLOC_ALIGN_MASK);
-  }
-
-
-#if HAVE_MMAP
-
-  /*
-    If have mmap, and the request size meets the mmap threshold, and
-    the system supports mmap, and there are few enough currently
-    allocated mmapped regions, try to directly map this request
-    rather than expanding top.
-  */
-
-  if ((CHUNK_SIZE_T)(nb) >= (CHUNK_SIZE_T)(av->mmap_threshold) &&
-      (av->n_mmaps < av->n_mmaps_max)) {
-
-    char* mm;             /* return value from mmap call*/
-
-    /*
-      Round up size to nearest page.  For mmapped chunks, the overhead
-      is one SIZE_SZ unit larger than for normal chunks, because there
-      is no following chunk whose prev_size field could be used.
-    */
-    size = (nb + SIZE_SZ + MALLOC_ALIGN_MASK + pagemask) & ~pagemask;
-
-    /* Don't try if size wraps around 0 */
-    if ((CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb)) {
-
-      mm = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
-      
-      if (mm != (char*)(MORECORE_FAILURE)) {
-        
-        /*
-          The offset to the start of the mmapped region is stored
-          in the prev_size field of the chunk. This allows us to adjust
-          returned start address to meet alignment requirements here 
-          and in memalign(), and still be able to compute proper
-          address argument for later munmap in free() and realloc().
-        */
-        
-        front_misalign = (INTERNAL_SIZE_T)chunk2mem(mm) & MALLOC_ALIGN_MASK;
-        if (front_misalign > 0) {
-          correction = MALLOC_ALIGNMENT - front_misalign;
-          p = (mchunkptr)(mm + correction);
-          p->prev_size = correction;
-          set_head(p, (size - correction) |IS_MMAPPED);
-        }
-        else {
-          p = (mchunkptr)mm;
-          p->prev_size = 0;
-          set_head(p, size|IS_MMAPPED);
-        }
-        
-        /* update statistics */
-        
-        if (++av->n_mmaps > av->max_n_mmaps) 
-          av->max_n_mmaps = av->n_mmaps;
-        
-        sum = av->mmapped_mem += size;
-        if (sum > (CHUNK_SIZE_T)(av->max_mmapped_mem)) 
-          av->max_mmapped_mem = sum;
-        sum += av->sbrked_mem;
-        if (sum > (CHUNK_SIZE_T)(av->max_total_mem)) 
-          av->max_total_mem = sum;
-
-        check_chunk(p);
-        
-        return chunk2mem(p);
-      }
-    }
-  }
-#endif
-
-  /* Record incoming configuration of top */
-
-  old_top  = av->top;
-  old_size = chunksize(old_top);
-  old_end  = (char*)(chunk_at_offset(old_top, old_size));
-
-  brk = snd_brk = (char*)(MORECORE_FAILURE); 
-
-  /* 
-     If not the first time through, we require old_size to be
-     at least MINSIZE and to have prev_inuse set.
-  */
-
-  assert((old_top == initial_top(av) && old_size == 0) || 
-         ((CHUNK_SIZE_T) (old_size) >= MINSIZE &&
-          prev_inuse(old_top)));
-
-  /* Precondition: not enough current space to satisfy nb request */
-  assert((CHUNK_SIZE_T)(old_size) < (CHUNK_SIZE_T)(nb + MINSIZE));
-
-  /* Precondition: all fastbins are consolidated */
-  assert(!have_fastchunks(av));
-
-
-  /* Request enough space for nb + pad + overhead */
-
-  size = nb + av->top_pad + MINSIZE;
-
-  /*
-    If contiguous, we can subtract out existing space that we hope to
-    combine with new space. We add it back later only if
-    we don't actually get contiguous space.
-  */
-
-  if (contiguous(av))
-    size -= old_size;
-
-  /*
-    Round to a multiple of page size.
-    If MORECORE is not contiguous, this ensures that we only call it
-    with whole-page arguments.  And if MORECORE is contiguous and
-    this is not first time through, this preserves page-alignment of
-    previous calls. Otherwise, we correct to page-align below.
-  */
-
-  size = (size + pagemask) & ~pagemask;
-
-  /*
-    Don't try to call MORECORE if argument is so big as to appear
-    negative. Note that since mmap takes size_t arg, it may succeed
-    below even if we cannot call MORECORE.
-  */
-
-  if (size > 0) 
-    brk = (char*)(MORECORE(size));
-
-  /*
-    If have mmap, try using it as a backup when MORECORE fails or
-    cannot be used. This is worth doing on systems that have "holes" in
-    address space, so sbrk cannot extend to give contiguous space, but
-    space is available elsewhere.  Note that we ignore mmap max count
-    and threshold limits, since the space will not be used as a
-    segregated mmap region.
-  */
-
-#if HAVE_MMAP
-  if (brk == (char*)(MORECORE_FAILURE)) {
-
-    /* Cannot merge with old top, so add its size back in */
-    if (contiguous(av))
-      size = (size + old_size + pagemask) & ~pagemask;
-
-    /* If we are relying on mmap as backup, then use larger units */
-    if ((CHUNK_SIZE_T)(size) < (CHUNK_SIZE_T)(MMAP_AS_MORECORE_SIZE))
-      size = MMAP_AS_MORECORE_SIZE;
-
-    /* Don't try if size wraps around 0 */
-    if ((CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb)) {
-
-      brk = (char*)(MMAP(0, size, PROT_READ|PROT_WRITE, MAP_PRIVATE));
-      
-      if (brk != (char*)(MORECORE_FAILURE)) {
-        
-        /* We do not need, and cannot use, another sbrk call to find end */
-        snd_brk = brk + size;
-        
-        /* 
-           Record that we no longer have a contiguous sbrk region. 
-           After the first time mmap is used as backup, we do not
-           ever rely on contiguous space since this could incorrectly
-           bridge regions.
-        */
-        set_noncontiguous(av);
-      }
-    }
-  }
-#endif
-
-  if (brk != (char*)(MORECORE_FAILURE)) {
-    av->sbrked_mem += size;
-
-    /*
-      If MORECORE extends previous space, we can likewise extend top size.
-    */
-    
-    if (brk == old_end && snd_brk == (char*)(MORECORE_FAILURE)) {
-      set_head(old_top, (size + old_size) | PREV_INUSE);
-    }
-
-    /*
-      Otherwise, make adjustments:
-      
-      * If the first time through or noncontiguous, we need to call sbrk
-        just to find out where the end of memory lies.
-
-      * We need to ensure that all returned chunks from malloc will meet
-        MALLOC_ALIGNMENT
-
-      * If there was an intervening foreign sbrk, we need to adjust sbrk
-        request size to account for fact that we will not be able to
-        combine new space with existing space in old_top.
-
-      * Almost all systems internally allocate whole pages at a time, in
-        which case we might as well use the whole last page of request.
-        So we allocate enough more memory to hit a page boundary now,
-        which in turn causes future contiguous calls to page-align.
-    */
-    
-    else {
-      front_misalign = 0;
-      end_misalign = 0;
-      correction = 0;
-      aligned_brk = brk;
-
-      /*
-        If MORECORE returns an address lower than we have seen before,
-        we know it isn't really contiguous.  This and some subsequent
-        checks help cope with non-conforming MORECORE functions and
-        the presence of "foreign" calls to MORECORE from outside of
-        malloc or by other threads.  We cannot guarantee to detect
-        these in all cases, but cope with the ones we do detect.
-      */
-      if (contiguous(av) && old_size != 0 && brk < old_end) {
-        set_noncontiguous(av);
-      }
-      
-      /* handle contiguous cases */
-      if (contiguous(av)) { 
-
-        /* 
-           We can tolerate forward non-contiguities here (usually due
-           to foreign calls) but treat them as part of our space for
-           stats reporting.
-        */
-        if (old_size != 0) 
-          av->sbrked_mem += brk - old_end;
-        
-        /* Guarantee alignment of first new chunk made from this space */
-
-        front_misalign = (INTERNAL_SIZE_T)chunk2mem(brk) & MALLOC_ALIGN_MASK;
-        if (front_misalign > 0) {
-
-          /*
-            Skip over some bytes to arrive at an aligned position.
-            We don't need to specially mark these wasted front bytes.
-            They will never be accessed anyway because
-            prev_inuse of av->top (and any chunk created from its start)
-            is always true after initialization.
-          */
-
-          correction = MALLOC_ALIGNMENT - front_misalign;
-          aligned_brk += correction;
-        }
-        
-        /*
-          If this isn't adjacent to existing space, then we will not
-          be able to merge with old_top space, so must add to 2nd request.
-        */
-        
-        correction += old_size;
-        
-        /* Extend the end address to hit a page boundary */
-        end_misalign = (INTERNAL_SIZE_T)(brk + size + correction);
-        correction += ((end_misalign + pagemask) & ~pagemask) - end_misalign;
-        
-        assert(correction >= 0);
-        snd_brk = (char*)(MORECORE(correction));
-        
-        if (snd_brk == (char*)(MORECORE_FAILURE)) {
-          /*
-            If can't allocate correction, try to at least find out current
-            brk.  It might be enough to proceed without failing.
-          */
-          correction = 0;
-          snd_brk = (char*)(MORECORE(0));
-        }
-        else if (snd_brk < brk) {
-          /*
-            If the second call gives noncontiguous space even though
-            it says it won't, the only course of action is to ignore
-            results of second call, and conservatively estimate where
-            the first call left us. Also set noncontiguous, so this
-            won't happen again, leaving at most one hole.
-            
-            Note that this check is intrinsically incomplete.  Because
-            MORECORE is allowed to give more space than we ask for,
-            there is no reliable way to detect a noncontiguity
-            producing a forward gap for the second call.
-          */
-          snd_brk = brk + size;
-          correction = 0;
-          set_noncontiguous(av);
-        }
-
-      }
-      
-      /* handle non-contiguous cases */
-      else { 
-        /* MORECORE/mmap must correctly align */
-        assert(aligned_OK(chunk2mem(brk)));
-        
-        /* Find out current end of memory */
-        if (snd_brk == (char*)(MORECORE_FAILURE)) {
-          snd_brk = (char*)(MORECORE(0));
-          av->sbrked_mem += snd_brk - brk - size;
-        }
-      }
-      
-      /* Adjust top based on results of second sbrk */
-      if (snd_brk != (char*)(MORECORE_FAILURE)) {
-        av->top = (mchunkptr)aligned_brk;
-        set_head(av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
-        av->sbrked_mem += correction;
-     
-        /*
-          If not the first time through, we either have a
-          gap due to foreign sbrk or a non-contiguous region.  Insert a
-          double fencepost at old_top to prevent consolidation with space
-          we don't own. These fenceposts are artificial chunks that are
-          marked as inuse and are in any case too small to use.  We need
-          two to make sizes and alignments work out.
-        */
-   
-        if (old_size != 0) {
-          /* 
-             Shrink old_top to insert fenceposts, keeping size a
-             multiple of MALLOC_ALIGNMENT. We know there is at least
-             enough space in old_top to do this.
-          */
-          old_size = (old_size - 3*SIZE_SZ) & ~MALLOC_ALIGN_MASK;
-          set_head(old_top, old_size | PREV_INUSE);
-          
-          /*
-            Note that the following assignments completely overwrite
-            old_top when old_size was previously MINSIZE.  This is
-            intentional. We need the fencepost, even if old_top otherwise gets
-            lost.
-          */
-          chunk_at_offset(old_top, old_size          )->size =
-            SIZE_SZ|PREV_INUSE;
-
-          chunk_at_offset(old_top, old_size + SIZE_SZ)->size =
-            SIZE_SZ|PREV_INUSE;
-
-          /* 
-             If possible, release the rest, suppressing trimming.
-          */
-          if (old_size >= MINSIZE) {
-            INTERNAL_SIZE_T tt = av->trim_threshold;
-            av->trim_threshold = (INTERNAL_SIZE_T)(-1);
-            fREe(chunk2mem(old_top));
-            av->trim_threshold = tt;
-          }
-        }
-      }
-    }
-    
-    /* Update statistics */
-    sum = av->sbrked_mem;
-    if (sum > (CHUNK_SIZE_T)(av->max_sbrked_mem))
-      av->max_sbrked_mem = sum;
-    
-    sum += av->mmapped_mem;
-    if (sum > (CHUNK_SIZE_T)(av->max_total_mem))
-      av->max_total_mem = sum;
-
-    check_malloc_state();
-    
-    /* finally, do the allocation */
-
-    p = av->top;
-    size = chunksize(p);
-    
-    /* check that one of the above allocation paths succeeded */
-    if ((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb + MINSIZE)) {
-      remainder_size = size - nb;
-      remainder = chunk_at_offset(p, nb);
-      av->top = remainder;
-      set_head(p, nb | PREV_INUSE);
-      set_head(remainder, remainder_size | PREV_INUSE);
-      check_malloced_chunk(p, nb);
-      return chunk2mem(p);
-    }
-
-  }
-
-  /* catch all failure paths */
-  MALLOC_FAILURE_ACTION;
-  return 0;
-}
-
-
-
-
-#ifndef MORECORE_CANNOT_TRIM
-/*
-  sYSTRIm is an inverse of sorts to sYSMALLOc.  It gives memory back
-  to the system (via negative arguments to sbrk) if there is unused
-  memory at the `high' end of the malloc pool. It is called
-  automatically by free() when top space exceeds the trim
-  threshold. It is also called by the public malloc_trim routine.  It
-  returns 1 if it actually released any memory, else 0.
-*/
-
-#if __STD_C
-static int sYSTRIm(size_t pad, mstate av)
-#else
-static int sYSTRIm(pad, av) size_t pad; mstate av;
-#endif
-{
-  long  top_size;        /* Amount of top-most memory */
-  long  extra;           /* Amount to release */
-  long  released;        /* Amount actually released */
-  char* current_brk;     /* address returned by pre-check sbrk call */
-  char* new_brk;         /* address returned by post-check sbrk call */
-  size_t pagesz;
-
-  pagesz = av->pagesize;
-  top_size = chunksize(av->top);
-  
-  /* Release in pagesize units, keeping at least one page */
-  extra = ((top_size - pad - MINSIZE + (pagesz-1)) / pagesz - 1) * pagesz;
-  
-  if (extra > 0) {
-    
-    /*
-      Only proceed if end of memory is where we last set it.
-      This avoids problems if there were foreign sbrk calls.
-    */
-    current_brk = (char*)(MORECORE(0));
-    if (current_brk == (char*)(av->top) + top_size) {
-      
-      /*
-        Attempt to release memory. We ignore MORECORE return value,
-        and instead call again to find out where new end of memory is.
-        This avoids problems if first call releases less than we asked,
-        of if failure somehow altered brk value. (We could still
-        encounter problems if it altered brk in some very bad way,
-        but the only thing we can do is adjust anyway, which will cause
-        some downstream failure.)
-      */
-      
-      MORECORE(-extra);
-      new_brk = (char*)(MORECORE(0));
-      
-      if (new_brk != (char*)MORECORE_FAILURE) {
-        released = (long)(current_brk - new_brk);
-        
-        if (released != 0) {
-          /* Success. Adjust top. */
-          av->sbrked_mem -= released;
-          set_head(av->top, (top_size - released) | PREV_INUSE);
-          check_malloc_state();
-          return 1;
-        }
-      }
-    }
-  }
-  return 0;
-}
-#endif
-
-/*
-  ------------------------------ malloc ------------------------------
-*/
-
-
-#if __STD_C
-Void_t* mALLOc(size_t bytes)
-#else
-  Void_t* mALLOc(bytes) size_t bytes;
-#endif
-{
-  mstate av = get_malloc_state();
-
-  INTERNAL_SIZE_T nb;               /* normalized request size */
-  unsigned int    idx;              /* associated bin index */
-  mbinptr         bin;              /* associated bin */
-  mfastbinptr*    fb;               /* associated fastbin */
-
-  mchunkptr       victim;           /* inspected/selected chunk */
-  INTERNAL_SIZE_T size;             /* its size */
-  int             victim_index;     /* its bin index */
-
-  mchunkptr       remainder;        /* remainder from a split */
-  CHUNK_SIZE_T    remainder_size;   /* its size */
-
-  unsigned int    block;            /* bit map traverser */
-  unsigned int    bit;              /* bit map traverser */
-  unsigned int    map;              /* current word of binmap */
-
-  mchunkptr       fwd;              /* misc temp for linking */
-  mchunkptr       bck;              /* misc temp for linking */
-
-  /*
-    Convert request size to internal form by adding SIZE_SZ bytes
-    overhead plus possibly more to obtain necessary alignment and/or
-    to obtain a size of at least MINSIZE, the smallest allocatable
-    size. Also, checked_request2size traps (returning 0) request sizes
-    that are so large that they wrap around zero when padded and
-    aligned.
-  */
-
-  checked_request2size(bytes, nb);
-
-  /*
-    Bypass search if no frees yet
-   */
-  if (!have_anychunks(av)) {
-    if (av->max_fast == 0) /* initialization check */
-      malloc_consolidate(av);
-    goto use_top;
-  }
-
-  /*
-    If the size qualifies as a fastbin, first check corresponding bin.
-  */
-
-  if ((CHUNK_SIZE_T)(nb) <= (CHUNK_SIZE_T)(av->max_fast)) { 
-    fb = &(av->fastbins[(fastbin_index(nb))]);
-    if ( (victim = *fb) != 0) {
-      *fb = victim->fd;
-      check_remalloced_chunk(victim, nb);
-      return chunk2mem(victim);
-    }
-  }
-
-  /*
-    If a small request, check regular bin.  Since these "smallbins"
-    hold one size each, no searching within bins is necessary.
-    (For a large request, we need to wait until unsorted chunks are
-    processed to find best fit. But for small ones, fits are exact
-    anyway, so we can check now, which is faster.)
-  */
-
-  if (in_smallbin_range(nb)) {
-    idx = smallbin_index(nb);
-    bin = bin_at(av,idx);
-
-    if ( (victim = last(bin)) != bin) {
-      bck = victim->bk;
-      set_inuse_bit_at_offset(victim, nb);
-      bin->bk = bck;
-      bck->fd = bin;
-      
-      check_malloced_chunk(victim, nb);
-      return chunk2mem(victim);
-    }
-  }
-
-  /* 
-     If this is a large request, consolidate fastbins before continuing.
-     While it might look excessive to kill all fastbins before
-     even seeing if there is space available, this avoids
-     fragmentation problems normally associated with fastbins.
-     Also, in practice, programs tend to have runs of either small or
-     large requests, but less often mixtures, so consolidation is not 
-     invoked all that often in most programs. And the programs that
-     it is called frequently in otherwise tend to fragment.
-  */
-
-  else {
-    idx = largebin_index(nb);
-    if (have_fastchunks(av)) 
-      malloc_consolidate(av);
-  }
-
-  /*
-    Process recently freed or remaindered chunks, taking one only if
-    it is exact fit, or, if this a small request, the chunk is remainder from
-    the most recent non-exact fit.  Place other traversed chunks in
-    bins.  Note that this step is the only place in any routine where
-    chunks are placed in bins.
-  */
-    
-  while ( (victim = unsorted_chunks(av)->bk) != unsorted_chunks(av)) {
-    bck = victim->bk;
-    size = chunksize(victim);
-    
-    /* 
-       If a small request, try to use last remainder if it is the
-       only chunk in unsorted bin.  This helps promote locality for
-       runs of consecutive small requests. This is the only
-       exception to best-fit, and applies only when there is
-       no exact fit for a small chunk.
-    */
-    
-    if (in_smallbin_range(nb) && 
-        bck == unsorted_chunks(av) &&
-        victim == av->last_remainder &&
-        (CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb + MINSIZE)) {
-      
-      /* split and reattach remainder */
-      remainder_size = size - nb;
-      remainder = chunk_at_offset(victim, nb);
-      unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-      av->last_remainder = remainder; 
-      remainder->bk = remainder->fd = unsorted_chunks(av);
-      
-      set_head(victim, nb | PREV_INUSE);
-      set_head(remainder, remainder_size | PREV_INUSE);
-      set_foot(remainder, remainder_size);
-      
-      check_malloced_chunk(victim, nb);
-      return chunk2mem(victim);
-    }
-    
-    /* remove from unsorted list */
-    unsorted_chunks(av)->bk = bck;
-    bck->fd = unsorted_chunks(av);
-    
-    /* Take now instead of binning if exact fit */
-    
-    if (size == nb) {
-      set_inuse_bit_at_offset(victim, size);
-      check_malloced_chunk(victim, nb);
-      return chunk2mem(victim);
-    }
-    
-    /* place chunk in bin */
-    
-    if (in_smallbin_range(size)) {
-      victim_index = smallbin_index(size);
-      bck = bin_at(av, victim_index);
-      fwd = bck->fd;
-    }
-    else {
-      victim_index = largebin_index(size);
-      bck = bin_at(av, victim_index);
-      fwd = bck->fd;
-      
-      if (fwd != bck) {
-        /* if smaller than smallest, place first */
-        if ((CHUNK_SIZE_T)(size) < (CHUNK_SIZE_T)(bck->bk->size)) {
-          fwd = bck;
-          bck = bck->bk;
-        }
-        else if ((CHUNK_SIZE_T)(size) >= 
-                 (CHUNK_SIZE_T)(FIRST_SORTED_BIN_SIZE)) {
-          
-          /* maintain large bins in sorted order */
-          size |= PREV_INUSE; /* Or with inuse bit to speed comparisons */
-          while ((CHUNK_SIZE_T)(size) < (CHUNK_SIZE_T)(fwd->size)) 
-            fwd = fwd->fd;
-          bck = fwd->bk;
-        }
-      }
-    }
-      
-    mark_bin(av, victim_index);
-    victim->bk = bck;
-    victim->fd = fwd;
-    fwd->bk = victim;
-    bck->fd = victim;
-  }
-  
-  /*
-    If a large request, scan through the chunks of current bin to
-    find one that fits.  (This will be the smallest that fits unless
-    FIRST_SORTED_BIN_SIZE has been changed from default.)  This is
-    the only step where an unbounded number of chunks might be
-    scanned without doing anything useful with them. However the
-    lists tend to be short.
-  */
-  
-  if (!in_smallbin_range(nb)) {
-    bin = bin_at(av, idx);
-    
-    for (victim = last(bin); victim != bin; victim = victim->bk) {
-      size = chunksize(victim);
-      
-      if ((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb)) {
-        remainder_size = size - nb;
-        unlink(victim, bck, fwd);
-        
-        /* Exhaust */
-        if (remainder_size < MINSIZE)  {
-          set_inuse_bit_at_offset(victim, size);
-          check_malloced_chunk(victim, nb);
-          return chunk2mem(victim);
-        }
-        /* Split */
-        else {
-          remainder = chunk_at_offset(victim, nb);
-          unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-          remainder->bk = remainder->fd = unsorted_chunks(av);
-          set_head(victim, nb | PREV_INUSE);
-          set_head(remainder, remainder_size | PREV_INUSE);
-          set_foot(remainder, remainder_size);
-          check_malloced_chunk(victim, nb);
-          return chunk2mem(victim);
-        } 
-      }
-    }    
-  }
-
-  /*
-    Search for a chunk by scanning bins, starting with next largest
-    bin. This search is strictly by best-fit; i.e., the smallest
-    (with ties going to approximately the least recently used) chunk
-    that fits is selected.
-    
-    The bitmap avoids needing to check that most blocks are nonempty.
-  */
-    
-  ++idx;
-  bin = bin_at(av,idx);
-  block = idx2block(idx);
-  map = av->binmap[block];
-  bit = idx2bit(idx);
-  
-  for (;;) {
-    
-    /* Skip rest of block if there are no more set bits in this block.  */
-    if (bit > map || bit == 0) {
-      do {
-        if (++block >= BINMAPSIZE)  /* out of bins */
-          goto use_top;
-      } while ( (map = av->binmap[block]) == 0);
-      
-      bin = bin_at(av, (block << BINMAPSHIFT));
-      bit = 1;
-    }
-    
-    /* Advance to bin with set bit. There must be one. */
-    while ((bit & map) == 0) {
-      bin = next_bin(bin);
-      bit <<= 1;
-      assert(bit != 0);
-    }
-    
-    /* Inspect the bin. It is likely to be non-empty */
-    victim = last(bin);
-    
-    /*  If a false alarm (empty bin), clear the bit. */
-    if (victim == bin) {
-      av->binmap[block] = map &= ~bit; /* Write through */
-      bin = next_bin(bin);
-      bit <<= 1;
-    }
-    
-    else {
-      size = chunksize(victim);
-      
-      /*  We know the first chunk in this bin is big enough to use. */
-      assert((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb));
-      
-      remainder_size = size - nb;
-      
-      /* unlink */
-      bck = victim->bk;
-      bin->bk = bck;
-      bck->fd = bin;
-      
-      /* Exhaust */
-      if (remainder_size < MINSIZE) {
-        set_inuse_bit_at_offset(victim, size);
-        check_malloced_chunk(victim, nb);
-        return chunk2mem(victim);
-      }
-      
-      /* Split */
-      else {
-        remainder = chunk_at_offset(victim, nb);
-        
-        unsorted_chunks(av)->bk = unsorted_chunks(av)->fd = remainder;
-        remainder->bk = remainder->fd = unsorted_chunks(av);
-        /* advertise as last remainder */
-        if (in_smallbin_range(nb)) 
-          av->last_remainder = remainder; 
-        
-        set_head(victim, nb | PREV_INUSE);
-        set_head(remainder, remainder_size | PREV_INUSE);
-        set_foot(remainder, remainder_size);
-        check_malloced_chunk(victim, nb);
-        return chunk2mem(victim);
-      }
-    }
-  }
-
-  use_top:    
-  /*
-    If large enough, split off the chunk bordering the end of memory
-    (held in av->top). Note that this is in accord with the best-fit
-    search rule.  In effect, av->top is treated as larger (and thus
-    less well fitting) than any other available chunk since it can
-    be extended to be as large as necessary (up to system
-    limitations).
-    
-    We require that av->top always exists (i.e., has size >=
-    MINSIZE) after initialization, so if it would otherwise be
-    exhuasted by current request, it is replenished. (The main
-    reason for ensuring it exists is that we may need MINSIZE space
-    to put in fenceposts in sysmalloc.)
-  */
-  
-  victim = av->top;
-  size = chunksize(victim);
-  
-  if ((CHUNK_SIZE_T)(size) >= (CHUNK_SIZE_T)(nb + MINSIZE)) {
-    remainder_size = size - nb;
-    remainder = chunk_at_offset(victim, nb);
-    av->top = remainder;
-    set_head(victim, nb | PREV_INUSE);
-    set_head(remainder, remainder_size | PREV_INUSE);
-    
-    check_malloced_chunk(victim, nb);
-    return chunk2mem(victim);
-  }
-  
-  /* 
-     If no space in top, relay to handle system-dependent cases 
-  */
-  return sYSMALLOc(nb, av);    
-}
-
-/*
-  ------------------------------ free ------------------------------
-*/
-
-#if __STD_C
-void fREe(Void_t* mem)
-#else
-void fREe(mem) Void_t* mem;
-#endif
-{
-  mstate av = get_malloc_state();
-
-  mchunkptr       p;           /* chunk corresponding to mem */
-  INTERNAL_SIZE_T size;        /* its size */
-  mfastbinptr*    fb;          /* associated fastbin */
-  mchunkptr       nextchunk;   /* next contiguous chunk */
-  INTERNAL_SIZE_T nextsize;    /* its size */
-  int             nextinuse;   /* true if nextchunk is used */
-  INTERNAL_SIZE_T prevsize;    /* size of previous contiguous chunk */
-  mchunkptr       bck;         /* misc temp for linking */
-  mchunkptr       fwd;         /* misc temp for linking */
-
-  /* free(0) has no effect */
-  if (mem != 0) {
-    p = mem2chunk(mem);
-    size = chunksize(p);
-
-    check_inuse_chunk(p);
-
-    /*
-      If eligible, place chunk on a fastbin so it can be found
-      and used quickly in malloc.
-    */
-
-    if ((CHUNK_SIZE_T)(size) <= (CHUNK_SIZE_T)(av->max_fast)
-
-#if TRIM_FASTBINS
-        /* 
-           If TRIM_FASTBINS set, don't place chunks
-           bordering top into fastbins
-        */
-        && (chunk_at_offset(p, size) != av->top)
-#endif
-        ) {
-
-      set_fastchunks(av);
-      fb = &(av->fastbins[fastbin_index(size)]);
-      p->fd = *fb;
-      *fb = p;
-    }
-
-    /*
-       Consolidate other non-mmapped chunks as they arrive.
-    */
-
-    else if (!chunk_is_mmapped(p)) {
-      set_anychunks(av);
-
-      nextchunk = chunk_at_offset(p, size);
-      nextsize = chunksize(nextchunk);
-
-      /* consolidate backward */
-      if (!prev_inuse(p)) {
-        prevsize = p->prev_size;
-        size += prevsize;
-        p = chunk_at_offset(p, -((long) prevsize));
-        unlink(p, bck, fwd);
-      }
-
-      if (nextchunk != av->top) {
-        /* get and clear inuse bit */
-        nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
-        set_head(nextchunk, nextsize);
-
-        /* consolidate forward */
-        if (!nextinuse) {
-          unlink(nextchunk, bck, fwd);
-          size += nextsize;
-        }
-
-        /*
-          Place the chunk in unsorted chunk list. Chunks are
-          not placed into regular bins until after they have
-          been given one chance to be used in malloc.
-        */
-
-        bck = unsorted_chunks(av);
-        fwd = bck->fd;
-        p->bk = bck;
-        p->fd = fwd;
-        bck->fd = p;
-        fwd->bk = p;
-
-        set_head(p, size | PREV_INUSE);
-        set_foot(p, size);
-        
-        check_free_chunk(p);
-      }
-
-      /*
-         If the chunk borders the current high end of memory,
-         consolidate into top
-      */
-
-      else {
-        size += nextsize;
-        set_head(p, size | PREV_INUSE);
-        av->top = p;
-        check_chunk(p);
-      }
-
-      /*
-        If freeing a large space, consolidate possibly-surrounding
-        chunks. Then, if the total unused topmost memory exceeds trim
-        threshold, ask malloc_trim to reduce top.
-
-        Unless max_fast is 0, we don't know if there are fastbins
-        bordering top, so we cannot tell for sure whether threshold
-        has been reached unless fastbins are consolidated.  But we
-        don't want to consolidate on each free.  As a compromise,
-        consolidation is performed if FASTBIN_CONSOLIDATION_THRESHOLD
-        is reached.
-      */
-
-      if ((CHUNK_SIZE_T)(size) >= FASTBIN_CONSOLIDATION_THRESHOLD) { 
-        if (have_fastchunks(av)) 
-          malloc_consolidate(av);
-
-#ifndef MORECORE_CANNOT_TRIM        
-        if ((CHUNK_SIZE_T)(chunksize(av->top)) >= 
-            (CHUNK_SIZE_T)(av->trim_threshold))
-          sYSTRIm(av->top_pad, av);
-#endif
-      }
-
-    }
-    /*
-      If the chunk was allocated via mmap, release via munmap()
-      Note that if HAVE_MMAP is false but chunk_is_mmapped is
-      true, then user must have overwritten memory. There's nothing
-      we can do to catch this error unless DEBUG is set, in which case
-      check_inuse_chunk (above) will have triggered error.
-    */
-
-    else {
-#if HAVE_MMAP
-      int ret;
-      INTERNAL_SIZE_T offset = p->prev_size;
-      av->n_mmaps--;
-      av->mmapped_mem -= (size + offset);
-      ret = munmap((char*)p - offset, size + offset);
-      /* munmap returns non-zero on failure */
-      assert(ret == 0);
-#endif
-    }
-  }
-}
-
-/*
-  ------------------------- malloc_consolidate -------------------------
-
-  malloc_consolidate is a specialized version of free() that tears
-  down chunks held in fastbins.  Free itself cannot be used for this
-  purpose since, among other things, it might place chunks back onto
-  fastbins.  So, instead, we need to use a minor variant of the same
-  code.
-  
-  Also, because this routine needs to be called the first time through
-  malloc anyway, it turns out to be the perfect place to trigger
-  initialization code.
-*/
-
-#if __STD_C
-static void malloc_consolidate(mstate av)
-#else
-static void malloc_consolidate(av) mstate av;
-#endif
-{
-  mfastbinptr*    fb;                 /* current fastbin being consolidated */
-  mfastbinptr*    maxfb;              /* last fastbin (for loop control) */
-  mchunkptr       p;                  /* current chunk being consolidated */
-  mchunkptr       nextp;              /* next chunk to consolidate */
-  mchunkptr       unsorted_bin;       /* bin header */
-  mchunkptr       first_unsorted;     /* chunk to link to */
-
-  /* These have same use as in free() */
-  mchunkptr       nextchunk;
-  INTERNAL_SIZE_T size;
-  INTERNAL_SIZE_T nextsize;
-  INTERNAL_SIZE_T prevsize;
-  int             nextinuse;
-  mchunkptr       bck;
-  mchunkptr       fwd;
-
-  /*
-    If max_fast is 0, we know that av hasn't
-    yet been initialized, in which case do so below
-  */
-
-  if (av->max_fast != 0) {
-    clear_fastchunks(av);
-
-    unsorted_bin = unsorted_chunks(av);
-
-    /*
-      Remove each chunk from fast bin and consolidate it, placing it
-      then in unsorted bin. Among other reasons for doing this,
-      placing in unsorted bin avoids needing to calculate actual bins
-      until malloc is sure that chunks aren't immediately going to be
-      reused anyway.
-    */
-    
-    maxfb = &(av->fastbins[fastbin_index(av->max_fast)]);
-    fb = &(av->fastbins[0]);
-    do {
-      if ( (p = *fb) != 0) {
-        *fb = 0;
-        
-        do {
-          check_inuse_chunk(p);
-          nextp = p->fd;
-          
-          /* Slightly streamlined version of consolidation code in free() */
-          size = p->size & ~PREV_INUSE;
-          nextchunk = chunk_at_offset(p, size);
-          nextsize = chunksize(nextchunk);
-          
-          if (!prev_inuse(p)) {
-            prevsize = p->prev_size;
-            size += prevsize;
-            p = chunk_at_offset(p, -((long) prevsize));
-            unlink(p, bck, fwd);
-          }
-          
-          if (nextchunk != av->top) {
-            nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
-            set_head(nextchunk, nextsize);
-            
-            if (!nextinuse) {
-              size += nextsize;
-              unlink(nextchunk, bck, fwd);
-            }
-            
-            first_unsorted = unsorted_bin->fd;
-            unsorted_bin->fd = p;
-            first_unsorted->bk = p;
-            
-            set_head(p, size | PREV_INUSE);
-            p->bk = unsorted_bin;
-            p->fd = first_unsorted;
-            set_foot(p, size);
-          }
-          
-          else {
-            size += nextsize;
-            set_head(p, size | PREV_INUSE);
-            av->top = p;
-          }
-          
-        } while ( (p = nextp) != 0);
-        
-      }
-    } while (fb++ != maxfb);
-  }
-  else {
-    malloc_init_state(av);
-    check_malloc_state();
-  }
-}
-
-/*
-  ------------------------------ realloc ------------------------------
-*/
-
-
-#if __STD_C
-Void_t* rEALLOc(Void_t* oldmem, size_t bytes)
-#else
-Void_t* rEALLOc(oldmem, bytes) Void_t* oldmem; size_t bytes;
-#endif
-{
-  mstate av = get_malloc_state();
-
-  INTERNAL_SIZE_T  nb;              /* padded request size */
-
-  mchunkptr        oldp;            /* chunk corresponding to oldmem */
-  INTERNAL_SIZE_T  oldsize;         /* its size */
-
-  mchunkptr        newp;            /* chunk to return */
-  INTERNAL_SIZE_T  newsize;         /* its size */
-  Void_t*          newmem;          /* corresponding user mem */
-
-  mchunkptr        next;            /* next contiguous chunk after oldp */
-
-  mchunkptr        remainder;       /* extra space at end of newp */
-  CHUNK_SIZE_T     remainder_size;  /* its size */
-
-  mchunkptr        bck;             /* misc temp for linking */
-  mchunkptr        fwd;             /* misc temp for linking */
-
-  CHUNK_SIZE_T     copysize;        /* bytes to copy */
-  unsigned int     ncopies;         /* INTERNAL_SIZE_T words to copy */
-  INTERNAL_SIZE_T* s;               /* copy source */ 
-  INTERNAL_SIZE_T* d;               /* copy destination */
-
-
-#ifdef REALLOC_ZERO_BYTES_FREES
-  if (bytes == 0) {
-    fREe(oldmem);
-    return 0;
-  }
-#endif
-
-  /* realloc of null is supposed to be same as malloc */
-  if (oldmem == 0) return mALLOc(bytes);
-
-  checked_request2size(bytes, nb);
-
-  oldp    = mem2chunk(oldmem);
-  oldsize = chunksize(oldp);
-
-  check_inuse_chunk(oldp);
-
-  if (!chunk_is_mmapped(oldp)) {
-
-    if ((CHUNK_SIZE_T)(oldsize) >= (CHUNK_SIZE_T)(nb)) {
-      /* already big enough; split below */
-      newp = oldp;
-      newsize = oldsize;
-    }
-
-    else {
-      next = chunk_at_offset(oldp, oldsize);
-
-      /* Try to expand forward into top */
-      if (next == av->top &&
-          (CHUNK_SIZE_T)(newsize = oldsize + chunksize(next)) >=
-          (CHUNK_SIZE_T)(nb + MINSIZE)) {
-        set_head_size(oldp, nb);
-        av->top = chunk_at_offset(oldp, nb);
-        set_head(av->top, (newsize - nb) | PREV_INUSE);
-        return chunk2mem(oldp);
-      }
-      
-      /* Try to expand forward into next chunk;  split off remainder below */
-      else if (next != av->top && 
-               !inuse(next) &&
-               (CHUNK_SIZE_T)(newsize = oldsize + chunksize(next)) >=
-               (CHUNK_SIZE_T)(nb)) {
-        newp = oldp;
-        unlink(next, bck, fwd);
-      }
-
-      /* allocate, copy, free */
-      else {
-        newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
-        if (newmem == 0)
-          return 0; /* propagate failure */
-      
-        newp = mem2chunk(newmem);
-        newsize = chunksize(newp);
-        
-        /*
-          Avoid copy if newp is next chunk after oldp.
-        */
-        if (newp == next) {
-          newsize += oldsize;
-          newp = oldp;
-        }
-        else {
-          /*
-            Unroll copy of <= 36 bytes (72 if 8byte sizes)
-            We know that contents have an odd number of
-            INTERNAL_SIZE_T-sized words; minimally 3.
-          */
-          
-          copysize = oldsize - SIZE_SZ;
-          s = (INTERNAL_SIZE_T*)(oldmem);
-          d = (INTERNAL_SIZE_T*)(newmem);
-          ncopies = copysize / sizeof(INTERNAL_SIZE_T);
-          assert(ncopies >= 3);
-          
-          if (ncopies > 9)
-            MALLOC_COPY(d, s, copysize);
-          
-          else {
-            *(d+0) = *(s+0);
-            *(d+1) = *(s+1);
-            *(d+2) = *(s+2);
-            if (ncopies > 4) {
-              *(d+3) = *(s+3);
-              *(d+4) = *(s+4);
-              if (ncopies > 6) {
-                *(d+5) = *(s+5);
-                *(d+6) = *(s+6);
-                if (ncopies > 8) {
-                  *(d+7) = *(s+7);
-                  *(d+8) = *(s+8);
-                }
-              }
-            }
-          }
-          
-          fREe(oldmem);
-          check_inuse_chunk(newp);
-          return chunk2mem(newp);
-        }
-      }
-    }
-
-    /* If possible, free extra space in old or extended chunk */
-
-    assert((CHUNK_SIZE_T)(newsize) >= (CHUNK_SIZE_T)(nb));
-
-    remainder_size = newsize - nb;
-
-    if (remainder_size < MINSIZE) { /* not enough extra to split off */
-      set_head_size(newp, newsize);
-      set_inuse_bit_at_offset(newp, newsize);
-    }
-    else { /* split remainder */
-      remainder = chunk_at_offset(newp, nb);
-      set_head_size(newp, nb);
-      set_head(remainder, remainder_size | PREV_INUSE);
-      /* Mark remainder as inuse so free() won't complain */
-      set_inuse_bit_at_offset(remainder, remainder_size);
-      fREe(chunk2mem(remainder)); 
-    }
-
-    check_inuse_chunk(newp);
-    return chunk2mem(newp);
-  }
-
-  /*
-    Handle mmap cases
-  */
-
-  else {
-#if HAVE_MMAP
-
-#if HAVE_MREMAP
-    INTERNAL_SIZE_T offset = oldp->prev_size;
-    size_t pagemask = av->pagesize - 1;
-    char *cp;
-    CHUNK_SIZE_T  sum;
-    
-    /* Note the extra SIZE_SZ overhead */
-    newsize = (nb + offset + SIZE_SZ + pagemask) & ~pagemask;
-
-    /* don't need to remap if still within same page */
-    if (oldsize == newsize - offset) 
-      return oldmem;
-
-    cp = (char*)mremap((char*)oldp - offset, oldsize + offset, newsize, 1);
-    
-    if (cp != (char*)MORECORE_FAILURE) {
-
-      newp = (mchunkptr)(cp + offset);
-      set_head(newp, (newsize - offset)|IS_MMAPPED);
-      
-      assert(aligned_OK(chunk2mem(newp)));
-      assert((newp->prev_size == offset));
-      
-      /* update statistics */
-      sum = av->mmapped_mem += newsize - oldsize;
-      if (sum > (CHUNK_SIZE_T)(av->max_mmapped_mem)) 
-        av->max_mmapped_mem = sum;
-      sum += av->sbrked_mem;
-      if (sum > (CHUNK_SIZE_T)(av->max_total_mem)) 
-        av->max_total_mem = sum;
-      
-      return chunk2mem(newp);
-    }
-#endif
-
-    /* Note the extra SIZE_SZ overhead. */
-    if ((CHUNK_SIZE_T)(oldsize) >= (CHUNK_SIZE_T)(nb + SIZE_SZ)) 
-      newmem = oldmem; /* do nothing */
-    else {
-      /* Must alloc, copy, free. */
-      newmem = mALLOc(nb - MALLOC_ALIGN_MASK);
-      if (newmem != 0) {
-        MALLOC_COPY(newmem, oldmem, oldsize - 2*SIZE_SZ);
-        fREe(oldmem);
-      }
-    }
-    return newmem;
-
-#else 
-    /* If !HAVE_MMAP, but chunk_is_mmapped, user must have overwritten mem */
-    check_malloc_state();
-    MALLOC_FAILURE_ACTION;
-    return 0;
-#endif
-  }
-}
-
-/*
-  ------------------------------ memalign ------------------------------
-*/
-
-#if __STD_C
-Void_t* mEMALIGn(size_t alignment, size_t bytes)
-#else
-Void_t* mEMALIGn(alignment, bytes) size_t alignment; size_t bytes;
-#endif
-{
-  INTERNAL_SIZE_T nb;             /* padded  request size */
-  char*           m;              /* memory returned by malloc call */
-  mchunkptr       p;              /* corresponding chunk */
-  char*           brk;            /* alignment point within p */
-  mchunkptr       newp;           /* chunk to return */
-  INTERNAL_SIZE_T newsize;        /* its size */
-  INTERNAL_SIZE_T leadsize;       /* leading space before alignment point */
-  mchunkptr       remainder;      /* spare room at end to split off */
-  CHUNK_SIZE_T    remainder_size; /* its size */
-  INTERNAL_SIZE_T size;
-
-  /* If need less alignment than we give anyway, just relay to malloc */
-
-  if (alignment <= MALLOC_ALIGNMENT) return mALLOc(bytes);
-
-  /* Otherwise, ensure that it is at least a minimum chunk size */
-
-  if (alignment <  MINSIZE) alignment = MINSIZE;
-
-  /* Make sure alignment is power of 2 (in case MINSIZE is not).  */
-  if ((alignment & (alignment - 1)) != 0) {
-    size_t a = MALLOC_ALIGNMENT * 2;
-    while ((CHUNK_SIZE_T)a < (CHUNK_SIZE_T)alignment) a <<= 1;
-    alignment = a;
-  }
-
-  checked_request2size(bytes, nb);
-
-  /*
-    Strategy: find a spot within that chunk that meets the alignment
-    request, and then possibly free the leading and trailing space.
-  */
-
-
-  /* Call malloc with worst case padding to hit alignment. */
-
-  m  = (char*)(mALLOc(nb + alignment + MINSIZE));
-
-  if (m == 0) return 0; /* propagate failure */
-
-  p = mem2chunk(m);
-
-  if ((((PTR_UINT)(m)) % alignment) != 0) { /* misaligned */
-
-    /*
-      Find an aligned spot inside chunk.  Since we need to give back
-      leading space in a chunk of at least MINSIZE, if the first
-      calculation places us at a spot with less than MINSIZE leader,
-      we can move to the next aligned spot -- we've allocated enough
-      total room so that this is always possible.
-    */
-
-    brk = (char*)mem2chunk((PTR_UINT)(((PTR_UINT)(m + alignment - 1)) &
-                           -((signed long) alignment)));
-    if ((CHUNK_SIZE_T)(brk - (char*)(p)) < MINSIZE)
-      brk += alignment;
-
-    newp = (mchunkptr)brk;
-    leadsize = brk - (char*)(p);
-    newsize = chunksize(p) - leadsize;
-
-    /* For mmapped chunks, just adjust offset */
-    if (chunk_is_mmapped(p)) {
-      newp->prev_size = p->prev_size + leadsize;
-      set_head(newp, newsize|IS_MMAPPED);
-      return chunk2mem(newp);
-    }
-
-    /* Otherwise, give back leader, use the rest */
-    set_head(newp, newsize | PREV_INUSE);
-    set_inuse_bit_at_offset(newp, newsize);
-    set_head_size(p, leadsize);
-    fREe(chunk2mem(p));
-    p = newp;
-
-    assert (newsize >= nb &&
-            (((PTR_UINT)(chunk2mem(p))) % alignment) == 0);
-  }
-
-  /* Also give back spare room at the end */
-  if (!chunk_is_mmapped(p)) {
-    size = chunksize(p);
-    if ((CHUNK_SIZE_T)(size) > (CHUNK_SIZE_T)(nb + MINSIZE)) {
-      remainder_size = size - nb;
-      remainder = chunk_at_offset(p, nb);
-      set_head(remainder, remainder_size | PREV_INUSE);
-      set_head_size(p, nb);
-      fREe(chunk2mem(remainder));
-    }
-  }
-
-  check_inuse_chunk(p);
-  return chunk2mem(p);
-}
-
-/*
-  ------------------------------ calloc ------------------------------
-*/
-
-#if __STD_C
-Void_t* cALLOc(size_t n_elements, size_t elem_size)
-#else
-Void_t* cALLOc(n_elements, elem_size) size_t n_elements; size_t elem_size;
-#endif
-{
-  mchunkptr p;
-  CHUNK_SIZE_T  clearsize;
-  CHUNK_SIZE_T  nclears;
-  INTERNAL_SIZE_T* d;
-
-  Void_t* mem = mALLOc(n_elements * elem_size);
-
-  if (mem != 0) {
-    p = mem2chunk(mem);
-
-    if (!chunk_is_mmapped(p))
-    {  
-      /*
-        Unroll clear of <= 36 bytes (72 if 8byte sizes)
-        We know that contents have an odd number of
-        INTERNAL_SIZE_T-sized words; minimally 3.
-      */
-
-      d = (INTERNAL_SIZE_T*)mem;
-      clearsize = chunksize(p) - SIZE_SZ;
-      nclears = clearsize / sizeof(INTERNAL_SIZE_T);
-      assert(nclears >= 3);
-
-      if (nclears > 9)
-        MALLOC_ZERO(d, clearsize);
-
-      else {
-        *(d+0) = 0;
-        *(d+1) = 0;
-        *(d+2) = 0;
-        if (nclears > 4) {
-          *(d+3) = 0;
-          *(d+4) = 0;
-          if (nclears > 6) {
-            *(d+5) = 0;
-            *(d+6) = 0;
-            if (nclears > 8) {
-              *(d+7) = 0;
-              *(d+8) = 0;
-            }
-          }
-        }
-      }
-    }
-#if ! MMAP_CLEARS
-    else
-    {
-      d = (INTERNAL_SIZE_T*)mem;
-      /*
-        Note the additional SIZE_SZ
-      */
-      clearsize = chunksize(p) - 2*SIZE_SZ;
-      MALLOC_ZERO(d, clearsize);
-    }
-#endif
-  }
-  return mem;
-}
-
-/*
-  ------------------------------ cfree ------------------------------
-*/
-
-#if __STD_C
-void cFREe(Void_t *mem)
-#else
-void cFREe(mem) Void_t *mem;
-#endif
-{
-  fREe(mem);
-}
-
-/*
-  ------------------------- independent_calloc -------------------------
-*/
-
-#if __STD_C
-Void_t** iCALLOc(size_t n_elements, size_t elem_size, Void_t* chunks[])
-#else
-Void_t** iCALLOc(n_elements, elem_size, chunks) size_t n_elements; size_t 
elem_size; Void_t* chunks[];
-#endif
-{
-  size_t sz = elem_size; /* serves as 1-element array */
-  /* opts arg of 3 means all elements are same size, and should be cleared */
-  return iALLOc(n_elements, &sz, 3, chunks);
-}
-
-/*
-  ------------------------- independent_comalloc -------------------------
-*/
-
-#if __STD_C
-Void_t** iCOMALLOc(size_t n_elements, size_t sizes[], Void_t* chunks[])
-#else
-Void_t** iCOMALLOc(n_elements, sizes, chunks) size_t n_elements; size_t 
sizes[]; Void_t* chunks[];
-#endif
-{
-  return iALLOc(n_elements, sizes, 0, chunks);
-}
-
-
-/*
-  ------------------------------ ialloc ------------------------------
-  ialloc provides common support for independent_X routines, handling all of
-  the combinations that can result.
-
-  The opts arg has:
-    bit 0 set if all elements are same size (using sizes[0])
-    bit 1 set if elements should be zeroed
-*/
-
-
-#if __STD_C
-static Void_t** iALLOc(size_t n_elements, 
-                       size_t* sizes,  
-                       int opts,
-                       Void_t* chunks[])
-#else
-static Void_t** iALLOc(n_elements, sizes, opts, chunks) size_t n_elements; 
size_t* sizes; int opts; Void_t* chunks[];
-#endif
-{
-  mstate av = get_malloc_state();
-  INTERNAL_SIZE_T element_size;   /* chunksize of each element, if all same */
-  INTERNAL_SIZE_T contents_size;  /* total size of elements */
-  INTERNAL_SIZE_T array_size;     /* request size of pointer array */
-  Void_t*         mem;            /* malloced aggregate space */
-  mchunkptr       p;              /* corresponding chunk */
-  INTERNAL_SIZE_T remainder_size; /* remaining bytes while splitting */
-  Void_t**        marray;         /* either "chunks" or malloced ptr array */
-  mchunkptr       array_chunk;    /* chunk for malloced ptr array */
-  int             mmx;            /* to disable mmap */
-  INTERNAL_SIZE_T size;           
-  size_t          i;
-
-  /* Ensure initialization */
-  if (av->max_fast == 0) malloc_consolidate(av);
-
-  /* compute array length, if needed */
-  if (chunks != 0) {
-    if (n_elements == 0)
-      return chunks; /* nothing to do */
-    marray = chunks;
-    array_size = 0;
-  }
-  else {
-    /* if empty req, must still return chunk representing empty array */
-    if (n_elements == 0) 
-      return (Void_t**) mALLOc(0);
-    marray = 0;
-    array_size = request2size(n_elements * (sizeof(Void_t*)));
-  }
-
-  /* compute total element size */
-  if (opts & 0x1) { /* all-same-size */
-    element_size = request2size(*sizes);
-    contents_size = n_elements * element_size;
-  }
-  else { /* add up all the sizes */
-    element_size = 0;
-    contents_size = 0;
-    for (i = 0; i != n_elements; ++i) 
-      contents_size += request2size(sizes[i]);     
-  }
-
-  /* subtract out alignment bytes from total to minimize overallocation */
-  size = contents_size + array_size - MALLOC_ALIGN_MASK;
-  
-  /* 
-     Allocate the aggregate chunk.
-     But first disable mmap so malloc won't use it, since
-     we would not be able to later free/realloc space internal
-     to a segregated mmap region.
- */
-  mmx = av->n_mmaps_max;   /* disable mmap */
-  av->n_mmaps_max = 0;
-  mem = mALLOc(size);
-  av->n_mmaps_max = mmx;   /* reset mmap */
-  if (mem == 0) 
-    return 0;
-
-  p = mem2chunk(mem);
-  assert(!chunk_is_mmapped(p)); 
-  remainder_size = chunksize(p);
-
-  if (opts & 0x2) {       /* optionally clear the elements */
-    MALLOC_ZERO(mem, remainder_size - SIZE_SZ - array_size);
-  }
-
-  /* If not provided, allocate the pointer array as final part of chunk */
-  if (marray == 0) {
-    array_chunk = chunk_at_offset(p, contents_size);
-    marray = (Void_t**) (chunk2mem(array_chunk));
-    set_head(array_chunk, (remainder_size - contents_size) | PREV_INUSE);
-    remainder_size = contents_size;
-  }
-
-  /* split out elements */
-  for (i = 0; ; ++i) {
-    marray[i] = chunk2mem(p);
-    if (i != n_elements-1) {
-      if (element_size != 0) 
-        size = element_size;
-      else
-        size = request2size(sizes[i]);          
-      remainder_size -= size;
-      set_head(p, size | PREV_INUSE);
-      p = chunk_at_offset(p, size);
-    }
-    else { /* the final element absorbs any overallocation slop */
-      set_head(p, remainder_size | PREV_INUSE);
-      break;
-    }
-  }
-
-#if DEBUG
-  if (marray != chunks) {
-    /* final element must have exactly exhausted chunk */
-    if (element_size != 0) 
-      assert(remainder_size == element_size);
-    else
-      assert(remainder_size == request2size(sizes[i]));
-    check_inuse_chunk(mem2chunk(marray));
-  }
-
-  for (i = 0; i != n_elements; ++i)
-    check_inuse_chunk(mem2chunk(marray[i]));
-#endif
-
-  return marray;
-}
-
-
-/*
-  ------------------------------ valloc ------------------------------
-*/
-
-#if __STD_C
-Void_t* vALLOc(size_t bytes)
-#else
-Void_t* vALLOc(bytes) size_t bytes;
-#endif
-{
-  /* Ensure initialization */
-  mstate av = get_malloc_state();
-  if (av->max_fast == 0) malloc_consolidate(av);
-  return mEMALIGn(av->pagesize, bytes);
-}
-
-/*
-  ------------------------------ pvalloc ------------------------------
-*/
-
-
-#if __STD_C
-Void_t* pVALLOc(size_t bytes)
-#else
-Void_t* pVALLOc(bytes) size_t bytes;
-#endif
-{
-  mstate av = get_malloc_state();
-  size_t pagesz;
-
-  /* Ensure initialization */
-  if (av->max_fast == 0) malloc_consolidate(av);
-  pagesz = av->pagesize;
-  return mEMALIGn(pagesz, (bytes + pagesz - 1) & ~(pagesz - 1));
-}
-   
-
-/*
-  ------------------------------ malloc_trim ------------------------------
-*/
-
-#if __STD_C
-int mTRIm(size_t pad)
-#else
-int mTRIm(pad) size_t pad;
-#endif
-{
-  mstate av = get_malloc_state();
-  /* Ensure initialization/consolidation */
-  malloc_consolidate(av);
-
-#ifndef MORECORE_CANNOT_TRIM        
-  return sYSTRIm(pad, av);
-#else
-  return 0;
-#endif
-}
-
-
-/*
-  ------------------------- malloc_usable_size -------------------------
-*/
-
-#if __STD_C
-size_t mUSABLe(Void_t* mem)
-#else
-size_t mUSABLe(mem) Void_t* mem;
-#endif
-{
-  mchunkptr p;
-  if (mem != 0) {
-    p = mem2chunk(mem);
-    if (chunk_is_mmapped(p))
-      return chunksize(p) - 2*SIZE_SZ;
-    else if (inuse(p))
-      return chunksize(p) - SIZE_SZ;
-  }
-  return 0;
-}
-
-/*
-  ------------------------------ mallinfo ------------------------------
-*/
-
-struct mallinfo mALLINFo()
-{
-  mstate av = get_malloc_state();
-  struct mallinfo mi;
-  int i;
-  mbinptr b;
-  mchunkptr p;
-  INTERNAL_SIZE_T avail;
-  INTERNAL_SIZE_T fastavail;
-  int nblocks;
-  int nfastblocks;
-
-  /* Ensure initialization */
-  if (av->top == 0)  malloc_consolidate(av);
-
-  check_malloc_state();
-
-  /* Account for top */
-  avail = chunksize(av->top);
-  nblocks = 1;  /* top always exists */
-
-  /* traverse fastbins */
-  nfastblocks = 0;
-  fastavail = 0;
-
-  for (i = 0; i < NFASTBINS; ++i) {
-    for (p = av->fastbins[i]; p != 0; p = p->fd) {
-      ++nfastblocks;
-      fastavail += chunksize(p);
-    }
-  }
-
-  avail += fastavail;
-
-  /* traverse regular bins */
-  for (i = 1; i < NBINS; ++i) {
-    b = bin_at(av, i);
-    for (p = last(b); p != b; p = p->bk) {
-      ++nblocks;
-      avail += chunksize(p);
-    }
-  }
-
-  mi.smblks = nfastblocks;
-  mi.ordblks = nblocks;
-  mi.fordblks = avail;
-  mi.uordblks = av->sbrked_mem - avail;
-  mi.arena = av->sbrked_mem;
-  mi.hblks = av->n_mmaps;
-  mi.hblkhd = av->mmapped_mem;
-  mi.fsmblks = fastavail;
-  mi.keepcost = chunksize(av->top);
-  mi.usmblks = av->max_total_mem;
-  return mi;
-}
-
-/*
-  ------------------------------ malloc_stats ------------------------------
-*/
-
-void mSTATs()
-{
-  struct mallinfo mi = mALLINFo();
-
-#ifdef WIN32
-  {
-    CHUNK_SIZE_T  free, reserved, committed;
-    vminfo (&free, &reserved, &committed);
-    fprintf(stderr, "free bytes       = %10lu\n", 
-            free);
-    fprintf(stderr, "reserved bytes   = %10lu\n", 
-            reserved);
-    fprintf(stderr, "committed bytes  = %10lu\n", 
-            committed);
-  }
-#endif
-
-/* RN XXX  */
-  printf("max system bytes = %10lu\n",
-          (CHUNK_SIZE_T)(mi.usmblks));
-  printf("system bytes     = %10lu\n",
-          (CHUNK_SIZE_T)(mi.arena + mi.hblkhd));
-  printf("in use bytes     = %10lu\n",
-          (CHUNK_SIZE_T)(mi.uordblks + mi.hblkhd));
-
-#ifdef WIN32 
-  {
-    CHUNK_SIZE_T  kernel, user;
-    if (cpuinfo (TRUE, &kernel, &user)) {
-      fprintf(stderr, "kernel ms        = %10lu\n", 
-              kernel);
-      fprintf(stderr, "user ms          = %10lu\n", 
-              user);
-    }
-  }
-#endif
-}
-
-
-/*
-  ------------------------------ mallopt ------------------------------
-*/
-
-#if __STD_C
-int mALLOPt(int param_number, int value)
-#else
-int mALLOPt(param_number, value) int param_number; int value;
-#endif
-{
-  mstate av = get_malloc_state();
-  /* Ensure initialization/consolidation */
-  malloc_consolidate(av);
-
-  switch(param_number) {
-  case M_MXFAST:
-    if (value >= 0 && value <= MAX_FAST_SIZE) {
-      set_max_fast(av, value);
-      return 1;
-    }
-    else
-      return 0;
-
-  case M_TRIM_THRESHOLD:
-    av->trim_threshold = value;
-    return 1;
-
-  case M_TOP_PAD:
-    av->top_pad = value;
-    return 1;
-
-  case M_MMAP_THRESHOLD:
-    av->mmap_threshold = value;
-    return 1;
-
-  case M_MMAP_MAX:
-#if !HAVE_MMAP
-    if (value != 0)
-      return 0;
-#endif
-    av->n_mmaps_max = value;
-    return 1;
-
-  default:
-    return 0;
-  }
-}
-
-
-/* 
-  -------------------- Alternative MORECORE functions --------------------
-*/
-
-
-/*
-  General Requirements for MORECORE.
-
-  The MORECORE function must have the following properties:
-
-  If MORECORE_CONTIGUOUS is false:
-
-    * MORECORE must allocate in multiples of pagesize. It will
-      only be called with arguments that are multiples of pagesize.
-
-    * MORECORE(0) must return an address that is at least 
-      MALLOC_ALIGNMENT aligned. (Page-aligning always suffices.)
-
-  else (i.e. If MORECORE_CONTIGUOUS is true):
-
-    * Consecutive calls to MORECORE with positive arguments
-      return increasing addresses, indicating that space has been
-      contiguously extended. 
-
-    * MORECORE need not allocate in multiples of pagesize.
-      Calls to MORECORE need not have args of multiples of pagesize.
-
-    * MORECORE need not page-align.
-
-  In either case:
-
-    * MORECORE may allocate more memory than requested. (Or even less,
-      but this will generally result in a malloc failure.)
-
-    * MORECORE must not allocate memory when given argument zero, but
-      instead return one past the end address of memory from previous
-      nonzero call. This malloc does NOT call MORECORE(0)
-      until at least one call with positive arguments is made, so
-      the initial value returned is not important.
-
-    * Even though consecutive calls to MORECORE need not return contiguous
-      addresses, it must be OK for malloc'ed chunks to span multiple
-      regions in those cases where they do happen to be contiguous.
-
-    * MORECORE need not handle negative arguments -- it may instead
-      just return MORECORE_FAILURE when given negative arguments.
-      Negative arguments are always multiples of pagesize. MORECORE
-      must not misinterpret negative args as large positive unsigned
-      args. You can suppress all such calls from even occurring by defining
-      MORECORE_CANNOT_TRIM,
-
-  There is some variation across systems about the type of the
-  argument to sbrk/MORECORE. If size_t is unsigned, then it cannot
-  actually be size_t, because sbrk supports negative args, so it is
-  normally the signed type of the same width as size_t (sometimes
-  declared as "intptr_t", and sometimes "ptrdiff_t").  It doesn't much
-  matter though. Internally, we use "long" as arguments, which should
-  work across all reasonable possibilities.
-
-  Additionally, if MORECORE ever returns failure for a positive
-  request, and HAVE_MMAP is true, then mmap is used as a noncontiguous
-  system allocator. This is a useful backup strategy for systems with
-  holes in address spaces -- in this case sbrk cannot contiguously
-  expand the heap, but mmap may be able to map noncontiguous space.
-
-  If you'd like mmap to ALWAYS be used, you can define MORECORE to be
-  a function that always returns MORECORE_FAILURE.
-
-  Malloc only has limited ability to detect failures of MORECORE
-  to supply contiguous space when it says it can. In particular,
-  multithreaded programs that do not use locks may result in
-  rece conditions across calls to MORECORE that result in gaps
-  that cannot be detected as such, and subsequent corruption.
-
-  If you are using this malloc with something other than sbrk (or its
-  emulation) to supply memory regions, you probably want to set
-  MORECORE_CONTIGUOUS as false.  As an example, here is a custom
-  allocator kindly contributed for pre-OSX macOS.  It uses virtually
-  but not necessarily physically contiguous non-paged memory (locked
-  in, present and won't get swapped out).  You can use it by
-  uncommenting this section, adding some #includes, and setting up the
-  appropriate defines above:
-
-      #define MORECORE osMoreCore
-      #define MORECORE_CONTIGUOUS 0
-
-  There is also a shutdown routine that should somehow be called for
-  cleanup upon program exit.
-
-  #define MAX_POOL_ENTRIES 100
-  #define MINIMUM_MORECORE_SIZE  (64 * 1024)
-  static int next_os_pool;
-  void *our_os_pools[MAX_POOL_ENTRIES];
-
-  void *osMoreCore(int size)
-  {
-    void *ptr = 0;
-    static void *sbrk_top = 0;
-
-    if (size > 0)
-    {
-      if (size < MINIMUM_MORECORE_SIZE)
-         size = MINIMUM_MORECORE_SIZE;
-      if (CurrentExecutionLevel() == kTaskLevel)
-         ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
-      if (ptr == 0)
-      {
-        return (void *) MORECORE_FAILURE;
-      }
-      // save ptrs so they can be freed during cleanup
-      our_os_pools[next_os_pool] = ptr;
-      next_os_pool++;
-      ptr = (void *) ((((CHUNK_SIZE_T) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
-      sbrk_top = (char *) ptr + size;
-      return ptr;
-    }
-    else if (size < 0)
-    {
-      // we don't currently support shrink behavior
-      return (void *) MORECORE_FAILURE;
-    }
-    else
-    {
-      return sbrk_top;
-    }
-  }
-
-  // cleanup any allocated memory pools
-  // called as last thing before shutting down driver
-
-  void osCleanupMem(void)
-  {
-    void **ptr;
-
-    for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
-      if (*ptr)
-      {
-         PoolDeallocate(*ptr);
-         *ptr = 0;
-      }
-  }
-
-*/
-
-
-/* 
-  -------------------------------------------------------------- 
-
-  Emulation of sbrk for win32. 
-  Donated by J. Walter <Walter@xxxxxxxxxxxx>.
-  For additional information about this code, and malloc on Win32, see 
-     http://www.genesys-e.de/jwalter/
-*/
-
-
-#ifdef WIN32
-
-#ifdef _DEBUG
-/* #define TRACE */
-#endif
-
-/* Support for USE_MALLOC_LOCK */
-#ifdef USE_MALLOC_LOCK
-
-/* Wait for spin lock */
-static int slwait (int *sl) {
-    while (InterlockedCompareExchange ((void **) sl, (void *) 1, (void *) 0) 
!= 0) 
-           Sleep (0);
-    return 0;
-}
-
-/* Release spin lock */
-static int slrelease (int *sl) {
-    InterlockedExchange (sl, 0);
-    return 0;
-}
-
-#ifdef NEEDED
-/* Spin lock for emulation code */
-static int g_sl;
-#endif
-
-#endif /* USE_MALLOC_LOCK */
-
-/* getpagesize for windows */
-static long getpagesize (void) {
-    static long g_pagesize = 0;
-    if (! g_pagesize) {
-        SYSTEM_INFO system_info;
-        GetSystemInfo (&system_info);
-        g_pagesize = system_info.dwPageSize;
-    }
-    return g_pagesize;
-}
-static long getregionsize (void) {
-    static long g_regionsize = 0;
-    if (! g_regionsize) {
-        SYSTEM_INFO system_info;
-        GetSystemInfo (&system_info);
-        g_regionsize = system_info.dwAllocationGranularity;
-    }
-    return g_regionsize;
-}
-
-/* A region list entry */
-typedef struct _region_list_entry {
-    void *top_allocated;
-    void *top_committed;
-    void *top_reserved;
-    long reserve_size;
-    struct _region_list_entry *previous;
-} region_list_entry;
-
-/* Allocate and link a region entry in the region list */
-static int region_list_append (region_list_entry **last, void *base_reserved, 
long reserve_size) {
-    region_list_entry *next = HeapAlloc (GetProcessHeap (), 0, sizeof 
(region_list_entry));
-    if (! next)
-        return FALSE;
-    next->top_allocated = (char *) base_reserved;
-    next->top_committed = (char *) base_reserved;
-    next->top_reserved = (char *) base_reserved + reserve_size;
-    next->reserve_size = reserve_size;
-    next->previous = *last;
-    *last = next;
-    return TRUE;
-}
-/* Free and unlink the last region entry from the region list */
-static int region_list_remove (region_list_entry **last) {
-    region_list_entry *previous = (*last)->previous;
-    if (! HeapFree (GetProcessHeap (), sizeof (region_list_entry), *last))
-        return FALSE;
-    *last = previous;
-    return TRUE;
-}
-
-#define CEIL(size,to)  (((size)+(to)-1)&~((to)-1))
-#define FLOOR(size,to) ((size)&~((to)-1))
-
-#define SBRK_SCALE  0
-/* #define SBRK_SCALE  1 */
-/* #define SBRK_SCALE  2 */
-/* #define SBRK_SCALE  4  */
-
-/* sbrk for windows */
-static void *sbrk (long size) {
-    static long g_pagesize, g_my_pagesize;
-    static long g_regionsize, g_my_regionsize;
-    static region_list_entry *g_last;
-    void *result = (void *) MORECORE_FAILURE;
-#ifdef TRACE
-    printf ("sbrk %d\n", size);
-#endif
-#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-    /* Wait for spin lock */
-    slwait (&g_sl);
-#endif
-    /* First time initialization */
-    if (! g_pagesize) {
-        g_pagesize = getpagesize ();
-        g_my_pagesize = g_pagesize << SBRK_SCALE;
-    }
-    if (! g_regionsize) {
-        g_regionsize = getregionsize ();
-        g_my_regionsize = g_regionsize << SBRK_SCALE;
-    }
-    if (! g_last) {
-        if (! region_list_append (&g_last, 0, 0)) 
-           goto sbrk_exit;
-    }
-    /* Assert invariants */
-    assert (g_last);
-    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) 
g_last->top_allocated &&
-            g_last->top_allocated <= g_last->top_committed);
-    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) 
g_last->top_committed &&
-            g_last->top_committed <= g_last->top_reserved &&
-            (unsigned) g_last->top_committed % g_pagesize == 0);
-    assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
-    assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
-    /* Allocation requested? */
-    if (size >= 0) {
-        /* Allocation size is the requested size */
-        long allocate_size = size;
-        /* Compute the size to commit */
-        long to_commit = (char *) g_last->top_allocated + allocate_size - 
(char *) g_last->top_committed;
-        /* Do we reach the commit limit? */
-        if (to_commit > 0) {
-            /* Round size to commit */
-            long commit_size = CEIL (to_commit, g_my_pagesize);
-            /* Compute the size to reserve */
-            long to_reserve = (char *) g_last->top_committed + commit_size - 
(char *) g_last->top_reserved;
-            /* Do we reach the reserve limit? */
-            if (to_reserve > 0) {
-                /* Compute the remaining size to commit in the current region 
*/
-                long remaining_commit_size = (char *) g_last->top_reserved - 
(char *) g_last->top_committed;
-                if (remaining_commit_size > 0) {
-                    /* Assert preconditions */
-                    assert ((unsigned) g_last->top_committed % g_pagesize == 
0);
-                    assert (0 < remaining_commit_size && remaining_commit_size 
% g_pagesize == 0); {
-                        /* Commit this */
-                        void *base_committed = VirtualAlloc 
(g_last->top_committed, remaining_commit_size,
-                                                                               
         MEM_COMMIT, PAGE_READWRITE);
-                        /* Check returned pointer for consistency */
-                        if (base_committed != g_last->top_committed)
-                            goto sbrk_exit;
-                        /* Assert postconditions */
-                        assert ((unsigned) base_committed % g_pagesize == 0);
-#ifdef TRACE
-                        printf ("Commit %p %d\n", base_committed, 
remaining_commit_size);
-#endif
-                        /* Adjust the regions commit top */
-                        g_last->top_committed = (char *) base_committed + 
remaining_commit_size;
-                    }
-                } {
-                    /* Now we are going to search and reserve. */
-                    int contiguous = -1;
-                    int found = FALSE;
-                    MEMORY_BASIC_INFORMATION memory_info;
-                    void *base_reserved;
-                    long reserve_size;
-                    do {
-                        /* Assume contiguous memory */
-                        contiguous = TRUE;
-                        /* Round size to reserve */
-                        reserve_size = CEIL (to_reserve, g_my_regionsize);
-                        /* Start with the current region's top */
-                        memory_info.BaseAddress = g_last->top_reserved;
-                        /* Assert preconditions */
-                        assert ((unsigned) memory_info.BaseAddress % 
g_pagesize == 0);
-                        assert (0 < reserve_size && reserve_size % 
g_regionsize == 0);
-                        while (VirtualQuery (memory_info.BaseAddress, 
&memory_info, sizeof (memory_info))) {
-                            /* Assert postconditions */
-                            assert ((unsigned) memory_info.BaseAddress % 
g_pagesize == 0);
-#ifdef TRACE
-                            printf ("Query %p %d %s\n", 
memory_info.BaseAddress, memory_info.RegionSize, 
-                                    memory_info.State == MEM_FREE ? "FREE": 
-                                    (memory_info.State == MEM_RESERVE ? 
"RESERVED":
-                                     (memory_info.State == MEM_COMMIT ? 
"COMMITTED": "?")));
-#endif
-                            /* Region is free, well aligned and big enough: we 
are done */
-                            if (memory_info.State == MEM_FREE &&
-                                (unsigned) memory_info.BaseAddress % 
g_regionsize == 0 &&
-                                memory_info.RegionSize >= (unsigned) 
reserve_size) {
-                                found = TRUE;
-                                break;
-                            }
-                            /* From now on we can't get contiguous memory! */
-                            contiguous = FALSE;
-                            /* Recompute size to reserve */
-                            reserve_size = CEIL (allocate_size, 
g_my_regionsize);
-                            memory_info.BaseAddress = (char *) 
memory_info.BaseAddress + memory_info.RegionSize;
-                            /* Assert preconditions */
-                            assert ((unsigned) memory_info.BaseAddress % 
g_pagesize == 0);
-                            assert (0 < reserve_size && reserve_size % 
g_regionsize == 0);
-                        }
-                        /* Search failed? */
-                        if (! found) 
-                            goto sbrk_exit;
-                        /* Assert preconditions */
-                        assert ((unsigned) memory_info.BaseAddress % 
g_regionsize == 0);
-                        assert (0 < reserve_size && reserve_size % 
g_regionsize == 0);
-                        /* Try to reserve this */
-                        base_reserved = VirtualAlloc (memory_info.BaseAddress, 
reserve_size, 
-                                                                         
MEM_RESERVE, PAGE_NOACCESS);
-                        if (! base_reserved) {
-                            int rc = GetLastError ();
-                            if (rc != ERROR_INVALID_ADDRESS) 
-                                goto sbrk_exit;
-                        }
-                        /* A null pointer signals (hopefully) a race condition 
with another thread. */
-                        /* In this case, we try again. */
-                    } while (! base_reserved);
-                    /* Check returned pointer for consistency */
-                    if (memory_info.BaseAddress && base_reserved != 
memory_info.BaseAddress)
-                        goto sbrk_exit;
-                    /* Assert postconditions */
-                    assert ((unsigned) base_reserved % g_regionsize == 0);
-#ifdef TRACE
-                    printf ("Reserve %p %d\n", base_reserved, reserve_size);
-#endif
-                    /* Did we get contiguous memory? */
-                    if (contiguous) {
-                        long start_size = (char *) g_last->top_committed - 
(char *) g_last->top_allocated;
-                        /* Adjust allocation size */
-                        allocate_size -= start_size;
-                        /* Adjust the regions allocation top */
-                        g_last->top_allocated = g_last->top_committed;
-                        /* Recompute the size to commit */
-                        to_commit = (char *) g_last->top_allocated + 
allocate_size - (char *) g_last->top_committed;
-                        /* Round size to commit */
-                        commit_size = CEIL (to_commit, g_my_pagesize);
-                    } 
-                    /* Append the new region to the list */
-                    if (! region_list_append (&g_last, base_reserved, 
reserve_size))
-                        goto sbrk_exit;
-                    /* Didn't we get contiguous memory? */
-                    if (! contiguous) {
-                        /* Recompute the size to commit */
-                        to_commit = (char *) g_last->top_allocated + 
allocate_size - (char *) g_last->top_committed;
-                        /* Round size to commit */
-                        commit_size = CEIL (to_commit, g_my_pagesize);
-                    }
-                }
-            } 
-            /* Assert preconditions */
-            assert ((unsigned) g_last->top_committed % g_pagesize == 0);
-            assert (0 < commit_size && commit_size % g_pagesize == 0); {
-                /* Commit this */
-                void *base_committed = VirtualAlloc (g_last->top_committed, 
commit_size, 
-                                                                            
MEM_COMMIT, PAGE_READWRITE);
-                /* Check returned pointer for consistency */
-                if (base_committed != g_last->top_committed)
-                    goto sbrk_exit;
-                /* Assert postconditions */
-                assert ((unsigned) base_committed % g_pagesize == 0);
-#ifdef TRACE
-                printf ("Commit %p %d\n", base_committed, commit_size);
-#endif
-                /* Adjust the regions commit top */
-                g_last->top_committed = (char *) base_committed + commit_size;
-            }
-        } 
-        /* Adjust the regions allocation top */
-        g_last->top_allocated = (char *) g_last->top_allocated + allocate_size;
-        result = (char *) g_last->top_allocated - size;
-    /* Deallocation requested? */
-    } else if (size < 0) {
-        long deallocate_size = - size;
-        /* As long as we have a region to release */
-        while ((char *) g_last->top_allocated - deallocate_size < (char *) 
g_last->top_reserved - g_last->reserve_size) {
-            /* Get the size to release */
-            long release_size = g_last->reserve_size;
-            /* Get the base address */
-            void *base_reserved = (char *) g_last->top_reserved - release_size;
-            /* Assert preconditions */
-            assert ((unsigned) base_reserved % g_regionsize == 0); 
-            assert (0 < release_size && release_size % g_regionsize == 0); {
-                /* Release this */
-                int rc = VirtualFree (base_reserved, 0, 
-                                      MEM_RELEASE);
-                /* Check returned code for consistency */
-                if (! rc)
-                    goto sbrk_exit;
-#ifdef TRACE
-                printf ("Release %p %d\n", base_reserved, release_size);
-#endif
-            }
-            /* Adjust deallocation size */
-            deallocate_size -= (char *) g_last->top_allocated - (char *) 
base_reserved;
-            /* Remove the old region from the list */
-            if (! region_list_remove (&g_last))
-                goto sbrk_exit;
-        } {
-            /* Compute the size to decommit */
-            long to_decommit = (char *) g_last->top_committed - ((char *) 
g_last->top_allocated - deallocate_size);
-            if (to_decommit >= g_my_pagesize) {
-                /* Compute the size to decommit */
-                long decommit_size = FLOOR (to_decommit, g_my_pagesize);
-                /*  Compute the base address */
-                void *base_committed = (char *) g_last->top_committed - 
decommit_size;
-                /* Assert preconditions */
-                assert ((unsigned) base_committed % g_pagesize == 0);
-                assert (0 < decommit_size && decommit_size % g_pagesize == 0); 
{
-                    /* Decommit this */
-                    int rc = VirtualFree ((char *) base_committed, 
decommit_size, 
-                                          MEM_DECOMMIT);
-                    /* Check returned code for consistency */
-                    if (! rc)
-                        goto sbrk_exit;
-#ifdef TRACE
-                    printf ("Decommit %p %d\n", base_committed, decommit_size);
-#endif
-                }
-                /* Adjust deallocation size and regions commit and allocate 
top */
-                deallocate_size -= (char *) g_last->top_allocated - (char *) 
base_committed;
-                g_last->top_committed = base_committed;
-                g_last->top_allocated = base_committed;
-            }
-        }
-        /* Adjust regions allocate top */
-        g_last->top_allocated = (char *) g_last->top_allocated - 
deallocate_size;
-        /* Check for underflow */
-        if ((char *) g_last->top_reserved - g_last->reserve_size > (char *) 
g_last->top_allocated ||
-            g_last->top_allocated > g_last->top_committed) {
-            /* Adjust regions allocate top */
-            g_last->top_allocated = (char *) g_last->top_reserved - 
g_last->reserve_size;
-            goto sbrk_exit;
-        }
-        result = g_last->top_allocated;
-    }
-    /* Assert invariants */
-    assert (g_last);
-    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) 
g_last->top_allocated &&
-            g_last->top_allocated <= g_last->top_committed);
-    assert ((char *) g_last->top_reserved - g_last->reserve_size <= (char *) 
g_last->top_committed &&
-            g_last->top_committed <= g_last->top_reserved &&
-            (unsigned) g_last->top_committed % g_pagesize == 0);
-    assert ((unsigned) g_last->top_reserved % g_regionsize == 0);
-    assert ((unsigned) g_last->reserve_size % g_regionsize == 0);
-
-sbrk_exit:
-#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-    /* Release spin lock */
-    slrelease (&g_sl);
-#endif
-    return result;
-}
-
-/* mmap for windows */
-static void *mmap (void *ptr, long size, long prot, long type, long handle, 
long arg) {
-    static long g_pagesize;
-    static long g_regionsize;
-#ifdef TRACE
-    printf ("mmap %d\n", size);
-#endif
-#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-    /* Wait for spin lock */
-    slwait (&g_sl);
-#endif
-    /* First time initialization */
-    if (! g_pagesize) 
-        g_pagesize = getpagesize ();
-    if (! g_regionsize) 
-        g_regionsize = getregionsize ();
-    /* Assert preconditions */
-    assert ((unsigned) ptr % g_regionsize == 0);
-    assert (size % g_pagesize == 0);
-    /* Allocate this */
-    ptr = VirtualAlloc (ptr, size,
-                                           MEM_RESERVE | MEM_COMMIT | 
MEM_TOP_DOWN, PAGE_READWRITE);
-    if (! ptr) {
-        ptr = (void *) MORECORE_FAILURE;
-        goto mmap_exit;
-    }
-    /* Assert postconditions */
-    assert ((unsigned) ptr % g_regionsize == 0);
-#ifdef TRACE
-    printf ("Commit %p %d\n", ptr, size);
-#endif
-mmap_exit:
-#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-    /* Release spin lock */
-    slrelease (&g_sl);
-#endif
-    return ptr;
-}
-
-/* munmap for windows */
-static long munmap (void *ptr, long size) {
-    static long g_pagesize;
-    static long g_regionsize;
-    int rc = MUNMAP_FAILURE;
-#ifdef TRACE
-    printf ("munmap %p %d\n", ptr, size);
-#endif
-#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-    /* Wait for spin lock */
-    slwait (&g_sl);
-#endif
-    /* First time initialization */
-    if (! g_pagesize) 
-        g_pagesize = getpagesize ();
-    if (! g_regionsize) 
-        g_regionsize = getregionsize ();
-    /* Assert preconditions */
-    assert ((unsigned) ptr % g_regionsize == 0);
-    assert (size % g_pagesize == 0);
-    /* Free this */
-    if (! VirtualFree (ptr, 0, 
-                       MEM_RELEASE))
-        goto munmap_exit;
-    rc = 0;
-#ifdef TRACE
-    printf ("Release %p %d\n", ptr, size);
-#endif
-munmap_exit:
-#if defined (USE_MALLOC_LOCK) && defined (NEEDED)
-    /* Release spin lock */
-    slrelease (&g_sl);
-#endif
-    return rc;
-}
-
-static void vminfo (CHUNK_SIZE_T  *free, CHUNK_SIZE_T  *reserved, CHUNK_SIZE_T 
 *committed) {
-    MEMORY_BASIC_INFORMATION memory_info;
-    memory_info.BaseAddress = 0;
-    *free = *reserved = *committed = 0;
-    while (VirtualQuery (memory_info.BaseAddress, &memory_info, sizeof 
(memory_info))) {
-        switch (memory_info.State) {
-        case MEM_FREE:
-            *free += memory_info.RegionSize;
-            break;
-        case MEM_RESERVE:
-            *reserved += memory_info.RegionSize;
-            break;
-        case MEM_COMMIT:
-            *committed += memory_info.RegionSize;
-            break;
-        }
-        memory_info.BaseAddress = (char *) memory_info.BaseAddress + 
memory_info.RegionSize;
-    }
-}
-
-static int cpuinfo (int whole, CHUNK_SIZE_T  *kernel, CHUNK_SIZE_T  *user) {
-    if (whole) {
-        __int64 creation64, exit64, kernel64, user64;
-        int rc = GetProcessTimes (GetCurrentProcess (), 
-                                  (FILETIME *) &creation64,  
-                                  (FILETIME *) &exit64, 
-                                  (FILETIME *) &kernel64, 
-                                  (FILETIME *) &user64);
-        if (! rc) {
-            *kernel = 0;
-            *user = 0;
-            return FALSE;
-        } 
-        *kernel = (CHUNK_SIZE_T) (kernel64 / 10000);
-        *user = (CHUNK_SIZE_T) (user64 / 10000);
-        return TRUE;
-    } else {
-        __int64 creation64, exit64, kernel64, user64;
-        int rc = GetThreadTimes (GetCurrentThread (), 
-                                 (FILETIME *) &creation64,  
-                                 (FILETIME *) &exit64, 
-                                 (FILETIME *) &kernel64, 
-                                 (FILETIME *) &user64);
-        if (! rc) {
-            *kernel = 0;
-            *user = 0;
-            return FALSE;
-        } 
-        *kernel = (CHUNK_SIZE_T) (kernel64 / 10000);
-        *user = (CHUNK_SIZE_T) (user64 / 10000);
-        return TRUE;
-    }
-}
-
-#endif /* WIN32 */
-
-/* ------------------------------------------------------------
-History:
-    V2.7.2 Sat Aug 17 09:07:30 2002  Doug Lea  (dl at gee)
-      * Fix malloc_state bitmap array misdeclaration
-
-    V2.7.1 Thu Jul 25 10:58:03 2002  Doug Lea  (dl at gee)
-      * Allow tuning of FIRST_SORTED_BIN_SIZE
-      * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
-      * Better detection and support for non-contiguousness of MORECORE. 
-        Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
-      * Bypass most of malloc if no frees. Thanks To Emery Berger.
-      * Fix freeing of old top non-contiguous chunk im sysmalloc.
-      * Raised default trim and map thresholds to 256K.
-      * Fix mmap-related #defines. Thanks to Lubos Lunak.
-      * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
-      * Branch-free bin calculation
-      * Default trim and mmap thresholds now 256K.
-
-    V2.7.0 Sun Mar 11 14:14:06 2001  Doug Lea  (dl at gee)
-      * Introduce independent_comalloc and independent_calloc.
-        Thanks to Michael Pachos for motivation and help.
-      * Make optional .h file available
-      * Allow > 2GB requests on 32bit systems.
-      * new WIN32 sbrk, mmap, munmap, lock code from <Walter@xxxxxxxxxxxx>.
-        Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
-        and Anonymous.
-      * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for 
-        helping test this.)
-      * memalign: check alignment arg
-      * realloc: don't try to shift chunks backwards, since this
-        leads to  more fragmentation in some programs and doesn't
-        seem to help in any others.
-      * Collect all cases in malloc requiring system memory into sYSMALLOc
-      * Use mmap as backup to sbrk
-      * Place all internal state in malloc_state
-      * Introduce fastbins (although similar to 2.5.1)
-      * Many minor tunings and cosmetic improvements
-      * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK 
-      * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
-        Thanks to Tony E. Bennett <tbennett@xxxxxxxxxx> and others.
-      * Include errno.h to support default failure action.
-
-    V2.6.6 Sun Dec  5 07:42:19 1999  Doug Lea  (dl at gee)
-      * return null for negative arguments
-      * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
-         * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
-          (e.g. WIN32 platforms)
-         * Cleanup header file inclusion for WIN32 platforms
-         * Cleanup code to avoid Microsoft Visual C++ compiler complaints
-         * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
-           memory allocation routines
-         * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
-         * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
-           usage of 'assert' in non-WIN32 code
-         * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
-           avoid infinite loop
-      * Always call 'fREe()' rather than 'free()'
-
-    V2.6.5 Wed Jun 17 15:57:31 1998  Doug Lea  (dl at gee)
-      * Fixed ordering problem with boundary-stamping
-
-    V2.6.3 Sun May 19 08:17:58 1996  Doug Lea  (dl at gee)
-      * Added pvalloc, as recommended by H.J. Liu
-      * Added 64bit pointer support mainly from Wolfram Gloger
-      * Added anonymously donated WIN32 sbrk emulation
-      * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
-      * malloc_extend_top: fix mask error that caused wastage after
-        foreign sbrks
-      * Add linux mremap support code from HJ Liu
-
-    V2.6.2 Tue Dec  5 06:52:55 1995  Doug Lea  (dl at gee)
-      * Integrated most documentation with the code.
-      * Add support for mmap, with help from
-        Wolfram Gloger (Gloger@xxxxxxxxxxxxxxxxxxx).
-      * Use last_remainder in more cases.
-      * Pack bins using idea from  colin@xxxxxxxxxxxxxxx
-      * Use ordered bins instead of best-fit threshhold
-      * Eliminate block-local decls to simplify tracing and debugging.
-      * Support another case of realloc via move into top
-      * Fix error occuring when initial sbrk_base not word-aligned.
-      * Rely on page size for units instead of SBRK_UNIT to
-        avoid surprises about sbrk alignment conventions.
-      * Add mallinfo, mallopt. Thanks to Raymond Nijssen
-        (raymond@xxxxxxxxxxxxx) for the suggestion.
-      * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
-      * More precautions for cases where other routines call sbrk,
-        courtesy of Wolfram Gloger (Gloger@xxxxxxxxxxxxxxxxxxx).
-      * Added macros etc., allowing use in linux libc from
-        H.J. Lu (hjl@xxxxxxxxxxxxxx)
-      * Inverted this history list
-
-    V2.6.1 Sat Dec  2 14:10:57 1995  Doug Lea  (dl at gee)
-      * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
-      * Removed all preallocation code since under current scheme
-        the work required to undo bad preallocations exceeds
-        the work saved in good cases for most test programs.
-      * No longer use return list or unconsolidated bins since
-        no scheme using them consistently outperforms those that don't
-        given above changes.
-      * Use best fit for very large chunks to prevent some worst-cases.
-      * Added some support for debugging
-
-    V2.6.0 Sat Nov  4 07:05:23 1995  Doug Lea  (dl at gee)
-      * Removed footers when chunks are in use. Thanks to
-        Paul Wilson (wilson@xxxxxxxxxxxx) for the suggestion.
-
-    V2.5.4 Wed Nov  1 07:54:51 1995  Doug Lea  (dl at gee)
-      * Added malloc_trim, with help from Wolfram Gloger
-        (wmglo@xxxxxxxxxxxxxxxxxxxxxxxx).
-
-    V2.5.3 Tue Apr 26 10:16:01 1994  Doug Lea  (dl at g)
-
-    V2.5.2 Tue Apr  5 16:20:40 1994  Doug Lea  (dl at g)
-      * realloc: try to expand in both directions
-      * malloc: swap order of clean-bin strategy;
-      * realloc: only conditionally expand backwards
-      * Try not to scavenge used bins
-      * Use bin counts as a guide to preallocation
-      * Occasionally bin return list chunks in first scan
-      * Add a few optimizations from colin@xxxxxxxxxxxxxxx
-
-    V2.5.1 Sat Aug 14 15:40:43 1993  Doug Lea  (dl at g)
-      * faster bin computation & slightly different binning
-      * merged all consolidations to one part of malloc proper
-         (eliminating old malloc_find_space & malloc_clean_bin)
-      * Scan 2 returns chunks (not just 1)
-      * Propagate failure in realloc if malloc returns 0
-      * Add stuff to allow compilation on non-ANSI compilers
-          from kpv@xxxxxxxxxxxxxxxx
-
-    V2.5 Sat Aug  7 07:41:59 1993  Doug Lea  (dl at g.oswego.edu)
-      * removed potential for odd address access in prev_chunk
-      * removed dependency on getpagesize.h
-      * misc cosmetics and a bit more internal documentation
-      * anticosmetics: mangled names in macros to evade debugger strangeness
-      * tested on sparc, hp-700, dec-mips, rs6000
-          with gcc & native cc (hp, dec only) allowing
-          Detlefs & Zorn comparison study (in SIGPLAN Notices.)
-
-    Trial version Fri Aug 28 13:14:29 1992  Doug Lea  (dl at g.oswego.edu)
-      * Based loosely on libg++-1.2X malloc. (It retains some of the overall
-         structure of old version,  but most details differ.)
-
-*/

_______________________________________________
Xen-changelog mailing list
Xen-changelog@xxxxxxxxxxxxxxxxxxx
http://lists.xensource.com/xen-changelog


 


Rackspace

Lists.xenproject.org is hosted with RackSpace, monitoring our
servers 24x7x365 and backed by RackSpace's Fanatical Support®.