[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

[Xen-changelog] [xen-unstable] [linux] Disable GENERIC_TIME until we have a xen clocksource.



# HG changeset patch
# User Christian Limpach <Christian.Limpach@xxxxxxxxxxxxx>
# Date 1169640176 0
# Node ID 8331aca2f29ca29704f4bafabe0e542f312d6950
# Parent  c3b2443408f4d125a5e222004090fb476d30e518
[linux] Disable GENERIC_TIME until we have a xen clocksource.

Signed-off-by: Christian Limpach <Christian.Limpach@xxxxxxxxxxxxx>
---
 linux-2.6-xen-sparse/kernel/timer.c    | 1914 ---------------------------------
 linux-2.6-xen-sparse/arch/i386/Kconfig |    1 
 2 files changed, 1 insertion(+), 1914 deletions(-)

diff -r c3b2443408f4 -r 8331aca2f29c linux-2.6-xen-sparse/arch/i386/Kconfig
--- a/linux-2.6-xen-sparse/arch/i386/Kconfig    Wed Jan 24 11:04:22 2007 +0000
+++ b/linux-2.6-xen-sparse/arch/i386/Kconfig    Wed Jan 24 12:02:56 2007 +0000
@@ -16,6 +16,7 @@ config X86_32
 
 config GENERIC_TIME
        bool
+       depends on !X86_XEN
        default y
 
 config LOCKDEP_SUPPORT
diff -r c3b2443408f4 -r 8331aca2f29c linux-2.6-xen-sparse/kernel/timer.c
--- a/linux-2.6-xen-sparse/kernel/timer.c       Wed Jan 24 11:04:22 2007 +0000
+++ /dev/null   Thu Jan 01 00:00:00 1970 +0000
@@ -1,1914 +0,0 @@
-/*
- *  linux/kernel/timer.c
- *
- *  Kernel internal timers, kernel timekeeping, basic process system calls
- *
- *  Copyright (C) 1991, 1992  Linus Torvalds
- *
- *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
- *
- *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
- *              "A Kernel Model for Precision Timekeeping" by Dave Mills
- *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
- *              serialize accesses to xtime/lost_ticks).
- *                              Copyright (C) 1998  Andrea Arcangeli
- *  1999-03-10  Improved NTP compatibility by Ulrich Windl
- *  2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
- *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
- *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
- *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
- */
-
-#include <linux/kernel_stat.h>
-#include <linux/module.h>
-#include <linux/interrupt.h>
-#include <linux/percpu.h>
-#include <linux/init.h>
-#include <linux/mm.h>
-#include <linux/swap.h>
-#include <linux/notifier.h>
-#include <linux/thread_info.h>
-#include <linux/time.h>
-#include <linux/jiffies.h>
-#include <linux/posix-timers.h>
-#include <linux/cpu.h>
-#include <linux/syscalls.h>
-#include <linux/delay.h>
-
-#include <asm/uaccess.h>
-#include <asm/unistd.h>
-#include <asm/div64.h>
-#include <asm/timex.h>
-#include <asm/io.h>
-
-#ifdef CONFIG_TIME_INTERPOLATION
-static void time_interpolator_update(long delta_nsec);
-#else
-#define time_interpolator_update(x)
-#endif
-
-u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
-
-EXPORT_SYMBOL(jiffies_64);
-
-/*
- * per-CPU timer vector definitions:
- */
-#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
-#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
-#define TVN_SIZE (1 << TVN_BITS)
-#define TVR_SIZE (1 << TVR_BITS)
-#define TVN_MASK (TVN_SIZE - 1)
-#define TVR_MASK (TVR_SIZE - 1)
-
-typedef struct tvec_s {
-       struct list_head vec[TVN_SIZE];
-} tvec_t;
-
-typedef struct tvec_root_s {
-       struct list_head vec[TVR_SIZE];
-} tvec_root_t;
-
-struct tvec_t_base_s {
-       spinlock_t lock;
-       struct timer_list *running_timer;
-       unsigned long timer_jiffies;
-       tvec_root_t tv1;
-       tvec_t tv2;
-       tvec_t tv3;
-       tvec_t tv4;
-       tvec_t tv5;
-} ____cacheline_aligned_in_smp;
-
-typedef struct tvec_t_base_s tvec_base_t;
-
-tvec_base_t boot_tvec_bases;
-EXPORT_SYMBOL(boot_tvec_bases);
-static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases;
-
-static inline void set_running_timer(tvec_base_t *base,
-                                       struct timer_list *timer)
-{
-#ifdef CONFIG_SMP
-       base->running_timer = timer;
-#endif
-}
-
-static void internal_add_timer(tvec_base_t *base, struct timer_list *timer)
-{
-       unsigned long expires = timer->expires;
-       unsigned long idx = expires - base->timer_jiffies;
-       struct list_head *vec;
-
-       if (idx < TVR_SIZE) {
-               int i = expires & TVR_MASK;
-               vec = base->tv1.vec + i;
-       } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
-               int i = (expires >> TVR_BITS) & TVN_MASK;
-               vec = base->tv2.vec + i;
-       } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
-               int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
-               vec = base->tv3.vec + i;
-       } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
-               int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
-               vec = base->tv4.vec + i;
-       } else if ((signed long) idx < 0) {
-               /*
-                * Can happen if you add a timer with expires == jiffies,
-                * or you set a timer to go off in the past
-                */
-               vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
-       } else {
-               int i;
-               /* If the timeout is larger than 0xffffffff on 64-bit
-                * architectures then we use the maximum timeout:
-                */
-               if (idx > 0xffffffffUL) {
-                       idx = 0xffffffffUL;
-                       expires = idx + base->timer_jiffies;
-               }
-               i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
-               vec = base->tv5.vec + i;
-       }
-       /*
-        * Timers are FIFO:
-        */
-       list_add_tail(&timer->entry, vec);
-}
-
-/***
- * init_timer - initialize a timer.
- * @timer: the timer to be initialized
- *
- * init_timer() must be done to a timer prior calling *any* of the
- * other timer functions.
- */
-void fastcall init_timer(struct timer_list *timer)
-{
-       timer->entry.next = NULL;
-       timer->base = __raw_get_cpu_var(tvec_bases);
-}
-EXPORT_SYMBOL(init_timer);
-
-static inline void detach_timer(struct timer_list *timer,
-                                       int clear_pending)
-{
-       struct list_head *entry = &timer->entry;
-
-       __list_del(entry->prev, entry->next);
-       if (clear_pending)
-               entry->next = NULL;
-       entry->prev = LIST_POISON2;
-}
-
-/*
- * We are using hashed locking: holding per_cpu(tvec_bases).lock
- * means that all timers which are tied to this base via timer->base are
- * locked, and the base itself is locked too.
- *
- * So __run_timers/migrate_timers can safely modify all timers which could
- * be found on ->tvX lists.
- *
- * When the timer's base is locked, and the timer removed from list, it is
- * possible to set timer->base = NULL and drop the lock: the timer remains
- * locked.
- */
-static tvec_base_t *lock_timer_base(struct timer_list *timer,
-                                       unsigned long *flags)
-{
-       tvec_base_t *base;
-
-       for (;;) {
-               base = timer->base;
-               if (likely(base != NULL)) {
-                       spin_lock_irqsave(&base->lock, *flags);
-                       if (likely(base == timer->base))
-                               return base;
-                       /* The timer has migrated to another CPU */
-                       spin_unlock_irqrestore(&base->lock, *flags);
-               }
-               cpu_relax();
-       }
-}
-
-int __mod_timer(struct timer_list *timer, unsigned long expires)
-{
-       tvec_base_t *base, *new_base;
-       unsigned long flags;
-       int ret = 0;
-
-       BUG_ON(!timer->function);
-
-       base = lock_timer_base(timer, &flags);
-
-       if (timer_pending(timer)) {
-               detach_timer(timer, 0);
-               ret = 1;
-       }
-
-       new_base = __get_cpu_var(tvec_bases);
-
-       if (base != new_base) {
-               /*
-                * We are trying to schedule the timer on the local CPU.
-                * However we can't change timer's base while it is running,
-                * otherwise del_timer_sync() can't detect that the timer's
-                * handler yet has not finished. This also guarantees that
-                * the timer is serialized wrt itself.
-                */
-               if (likely(base->running_timer != timer)) {
-                       /* See the comment in lock_timer_base() */
-                       timer->base = NULL;
-                       spin_unlock(&base->lock);
-                       base = new_base;
-                       spin_lock(&base->lock);
-                       timer->base = base;
-               }
-       }
-
-       timer->expires = expires;
-       internal_add_timer(base, timer);
-       spin_unlock_irqrestore(&base->lock, flags);
-
-       return ret;
-}
-
-EXPORT_SYMBOL(__mod_timer);
-
-/***
- * add_timer_on - start a timer on a particular CPU
- * @timer: the timer to be added
- * @cpu: the CPU to start it on
- *
- * This is not very scalable on SMP. Double adds are not possible.
- */
-void add_timer_on(struct timer_list *timer, int cpu)
-{
-       tvec_base_t *base = per_cpu(tvec_bases, cpu);
-       unsigned long flags;
-
-       BUG_ON(timer_pending(timer) || !timer->function);
-       spin_lock_irqsave(&base->lock, flags);
-       timer->base = base;
-       internal_add_timer(base, timer);
-       spin_unlock_irqrestore(&base->lock, flags);
-}
-
-
-/***
- * mod_timer - modify a timer's timeout
- * @timer: the timer to be modified
- *
- * mod_timer is a more efficient way to update the expire field of an
- * active timer (if the timer is inactive it will be activated)
- *
- * mod_timer(timer, expires) is equivalent to:
- *
- *     del_timer(timer); timer->expires = expires; add_timer(timer);
- *
- * Note that if there are multiple unserialized concurrent users of the
- * same timer, then mod_timer() is the only safe way to modify the timeout,
- * since add_timer() cannot modify an already running timer.
- *
- * The function returns whether it has modified a pending timer or not.
- * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
- * active timer returns 1.)
- */
-int mod_timer(struct timer_list *timer, unsigned long expires)
-{
-       BUG_ON(!timer->function);
-
-       /*
-        * This is a common optimization triggered by the
-        * networking code - if the timer is re-modified
-        * to be the same thing then just return:
-        */
-       if (timer->expires == expires && timer_pending(timer))
-               return 1;
-
-       return __mod_timer(timer, expires);
-}
-
-EXPORT_SYMBOL(mod_timer);
-
-/***
- * del_timer - deactive a timer.
- * @timer: the timer to be deactivated
- *
- * del_timer() deactivates a timer - this works on both active and inactive
- * timers.
- *
- * The function returns whether it has deactivated a pending timer or not.
- * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
- * active timer returns 1.)
- */
-int del_timer(struct timer_list *timer)
-{
-       tvec_base_t *base;
-       unsigned long flags;
-       int ret = 0;
-
-       if (timer_pending(timer)) {
-               base = lock_timer_base(timer, &flags);
-               if (timer_pending(timer)) {
-                       detach_timer(timer, 1);
-                       ret = 1;
-               }
-               spin_unlock_irqrestore(&base->lock, flags);
-       }
-
-       return ret;
-}
-
-EXPORT_SYMBOL(del_timer);
-
-#ifdef CONFIG_SMP
-/*
- * This function tries to deactivate a timer. Upon successful (ret >= 0)
- * exit the timer is not queued and the handler is not running on any CPU.
- *
- * It must not be called from interrupt contexts.
- */
-int try_to_del_timer_sync(struct timer_list *timer)
-{
-       tvec_base_t *base;
-       unsigned long flags;
-       int ret = -1;
-
-       base = lock_timer_base(timer, &flags);
-
-       if (base->running_timer == timer)
-               goto out;
-
-       ret = 0;
-       if (timer_pending(timer)) {
-               detach_timer(timer, 1);
-               ret = 1;
-       }
-out:
-       spin_unlock_irqrestore(&base->lock, flags);
-
-       return ret;
-}
-
-/***
- * del_timer_sync - deactivate a timer and wait for the handler to finish.
- * @timer: the timer to be deactivated
- *
- * This function only differs from del_timer() on SMP: besides deactivating
- * the timer it also makes sure the handler has finished executing on other
- * CPUs.
- *
- * Synchronization rules: callers must prevent restarting of the timer,
- * otherwise this function is meaningless. It must not be called from
- * interrupt contexts. The caller must not hold locks which would prevent
- * completion of the timer's handler. The timer's handler must not call
- * add_timer_on(). Upon exit the timer is not queued and the handler is
- * not running on any CPU.
- *
- * The function returns whether it has deactivated a pending timer or not.
- */
-int del_timer_sync(struct timer_list *timer)
-{
-       for (;;) {
-               int ret = try_to_del_timer_sync(timer);
-               if (ret >= 0)
-                       return ret;
-               cpu_relax();
-       }
-}
-
-EXPORT_SYMBOL(del_timer_sync);
-#endif
-
-static int cascade(tvec_base_t *base, tvec_t *tv, int index)
-{
-       /* cascade all the timers from tv up one level */
-       struct timer_list *timer, *tmp;
-       struct list_head tv_list;
-
-       list_replace_init(tv->vec + index, &tv_list);
-
-       /*
-        * We are removing _all_ timers from the list, so we
-        * don't have to detach them individually.
-        */
-       list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
-               BUG_ON(timer->base != base);
-               internal_add_timer(base, timer);
-       }
-
-       return index;
-}
-
-/***
- * __run_timers - run all expired timers (if any) on this CPU.
- * @base: the timer vector to be processed.
- *
- * This function cascades all vectors and executes all expired timer
- * vectors.
- */
-#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & 
TVN_MASK)
-
-static inline void __run_timers(tvec_base_t *base)
-{
-       struct timer_list *timer;
-
-       spin_lock_irq(&base->lock);
-       while (time_after_eq(jiffies, base->timer_jiffies)) {
-               struct list_head work_list;
-               struct list_head *head = &work_list;
-               int index = base->timer_jiffies & TVR_MASK;
-
-               /*
-                * Cascade timers:
-                */
-               if (!index &&
-                       (!cascade(base, &base->tv2, INDEX(0))) &&
-                               (!cascade(base, &base->tv3, INDEX(1))) &&
-                                       !cascade(base, &base->tv4, INDEX(2)))
-                       cascade(base, &base->tv5, INDEX(3));
-               ++base->timer_jiffies;
-               list_replace_init(base->tv1.vec + index, &work_list);
-               while (!list_empty(head)) {
-                       void (*fn)(unsigned long);
-                       unsigned long data;
-
-                       timer = list_entry(head->next,struct timer_list,entry);
-                       fn = timer->function;
-                       data = timer->data;
-
-                       set_running_timer(base, timer);
-                       detach_timer(timer, 1);
-                       spin_unlock_irq(&base->lock);
-                       {
-                               int preempt_count = preempt_count();
-                               fn(data);
-                               if (preempt_count != preempt_count()) {
-                                       printk(KERN_WARNING "huh, entered %p "
-                                              "with preempt_count %08x, exited"
-                                              " with %08x?\n",
-                                              fn, preempt_count,
-                                              preempt_count());
-                                       BUG();
-                               }
-                       }
-                       spin_lock_irq(&base->lock);
-               }
-       }
-       set_running_timer(base, NULL);
-       spin_unlock_irq(&base->lock);
-}
-
-#ifdef CONFIG_NO_IDLE_HZ
-/*
- * Find out when the next timer event is due to happen. This
- * is used on S/390 to stop all activity when a cpus is idle.
- * This functions needs to be called disabled.
- */
-unsigned long next_timer_interrupt(void)
-{
-       tvec_base_t *base;
-       struct list_head *list;
-       struct timer_list *nte;
-       unsigned long expires;
-       unsigned long hr_expires = MAX_JIFFY_OFFSET;
-       ktime_t hr_delta;
-       tvec_t *varray[4];
-       int i, j;
-
-       hr_delta = hrtimer_get_next_event();
-       if (hr_delta.tv64 != KTIME_MAX) {
-               struct timespec tsdelta;
-               tsdelta = ktime_to_timespec(hr_delta);
-               hr_expires = timespec_to_jiffies(&tsdelta);
-               if (hr_expires < 3)
-                       return hr_expires + jiffies;
-       }
-       hr_expires += jiffies;
-
-       base = __get_cpu_var(tvec_bases);
-       spin_lock(&base->lock);
-       expires = base->timer_jiffies + (LONG_MAX >> 1);
-       list = NULL;
-
-       /* Look for timer events in tv1. */
-       j = base->timer_jiffies & TVR_MASK;
-       do {
-               list_for_each_entry(nte, base->tv1.vec + j, entry) {
-                       expires = nte->expires;
-                       if (j < (base->timer_jiffies & TVR_MASK))
-                               list = base->tv2.vec + (INDEX(0));
-                       goto found;
-               }
-               j = (j + 1) & TVR_MASK;
-       } while (j != (base->timer_jiffies & TVR_MASK));
-
-       /* Check tv2-tv5. */
-       varray[0] = &base->tv2;
-       varray[1] = &base->tv3;
-       varray[2] = &base->tv4;
-       varray[3] = &base->tv5;
-       for (i = 0; i < 4; i++) {
-               j = INDEX(i);
-               do {
-                       if (list_empty(varray[i]->vec + j)) {
-                               j = (j + 1) & TVN_MASK;
-                               continue;
-                       }
-                       list_for_each_entry(nte, varray[i]->vec + j, entry)
-                               if (time_before(nte->expires, expires))
-                                       expires = nte->expires;
-                       if (j < (INDEX(i)) && i < 3)
-                               list = varray[i + 1]->vec + (INDEX(i + 1));
-                       goto found;
-               } while (j != (INDEX(i)));
-       }
-found:
-       if (list) {
-               /*
-                * The search wrapped. We need to look at the next list
-                * from next tv element that would cascade into tv element
-                * where we found the timer element.
-                */
-               list_for_each_entry(nte, list, entry) {
-                       if (time_before(nte->expires, expires))
-                               expires = nte->expires;
-               }
-       }
-       spin_unlock(&base->lock);
-
-       /*
-        * It can happen that other CPUs service timer IRQs and increment
-        * jiffies, but we have not yet got a local timer tick to process
-        * the timer wheels.  In that case, the expiry time can be before
-        * jiffies, but since the high-resolution timer here is relative to
-        * jiffies, the default expression when high-resolution timers are
-        * not active,
-        *
-        *   time_before(MAX_JIFFY_OFFSET + jiffies, expires)
-        *
-        * would falsely evaluate to true.  If that is the case, just
-        * return jiffies so that we can immediately fire the local timer
-        */
-       if (time_before(expires, jiffies))
-               return jiffies;
-
-       if (time_before(hr_expires, expires))
-               return hr_expires;
-
-       return expires;
-}
-#endif
-
-/******************************************************************/
-
-/*
- * Timekeeping variables
- */
-unsigned long tick_usec = TICK_USEC;           /* USER_HZ period (usec) */
-unsigned long tick_nsec = TICK_NSEC;           /* ACTHZ period (nsec) */
-
-/* 
- * The current time 
- * wall_to_monotonic is what we need to add to xtime (or xtime corrected 
- * for sub jiffie times) to get to monotonic time.  Monotonic is pegged
- * at zero at system boot time, so wall_to_monotonic will be negative,
- * however, we will ALWAYS keep the tv_nsec part positive so we can use
- * the usual normalization.
- */
-struct timespec xtime __attribute__ ((aligned (16)));
-struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
-
-EXPORT_SYMBOL(xtime);
-
-/* Don't completely fail for HZ > 500.  */
-int tickadj = 500/HZ ? : 1;            /* microsecs */
-
-
-/*
- * phase-lock loop variables
- */
-/* TIME_ERROR prevents overwriting the CMOS clock */
-int time_state = TIME_OK;              /* clock synchronization status */
-int time_status = STA_UNSYNC;          /* clock status bits            */
-long time_offset;                      /* time adjustment (us)         */
-long time_constant = 2;                        /* pll time constant            
*/
-long time_tolerance = MAXFREQ;         /* frequency tolerance (ppm)    */
-long time_precision = 1;               /* clock precision (us)         */
-long time_maxerror = NTP_PHASE_LIMIT;  /* maximum error (us)           */
-long time_esterror = NTP_PHASE_LIMIT;  /* estimated error (us)         */
-long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / 
NSEC_PER_USEC;
-                                       /* frequency offset (scaled ppm)*/
-static long time_adj;                  /* tick adjust (scaled 1 / HZ)  */
-long time_reftime;                     /* time at last adjustment (s)  */
-long time_adjust;
-long time_next_adjust;
-
-/*
- * this routine handles the overflow of the microsecond field
- *
- * The tricky bits of code to handle the accurate clock support
- * were provided by Dave Mills (Mills@xxxxxxxx) of NTP fame.
- * They were originally developed for SUN and DEC kernels.
- * All the kudos should go to Dave for this stuff.
- *
- */
-static void second_overflow(void)
-{
-       long ltemp;
-
-       /* Bump the maxerror field */
-       time_maxerror += time_tolerance >> SHIFT_USEC;
-       if (time_maxerror > NTP_PHASE_LIMIT) {
-               time_maxerror = NTP_PHASE_LIMIT;
-               time_status |= STA_UNSYNC;
-       }
-
-       /*
-        * Leap second processing. If in leap-insert state at the end of the
-        * day, the system clock is set back one second; if in leap-delete
-        * state, the system clock is set ahead one second. The microtime()
-        * routine or external clock driver will insure that reported time is
-        * always monotonic. The ugly divides should be replaced.
-        */
-       switch (time_state) {
-       case TIME_OK:
-               if (time_status & STA_INS)
-                       time_state = TIME_INS;
-               else if (time_status & STA_DEL)
-                       time_state = TIME_DEL;
-               break;
-       case TIME_INS:
-               if (xtime.tv_sec % 86400 == 0) {
-                       xtime.tv_sec--;
-                       wall_to_monotonic.tv_sec++;
-                       /*
-                        * The timer interpolator will make time change
-                        * gradually instead of an immediate jump by one second
-                        */
-                       time_interpolator_update(-NSEC_PER_SEC);
-                       time_state = TIME_OOP;
-                       clock_was_set();
-                       printk(KERN_NOTICE "Clock: inserting leap second "
-                                       "23:59:60 UTC\n");
-               }
-               break;
-       case TIME_DEL:
-               if ((xtime.tv_sec + 1) % 86400 == 0) {
-                       xtime.tv_sec++;
-                       wall_to_monotonic.tv_sec--;
-                       /*
-                        * Use of time interpolator for a gradual change of
-                        * time
-                        */
-                       time_interpolator_update(NSEC_PER_SEC);
-                       time_state = TIME_WAIT;
-                       clock_was_set();
-                       printk(KERN_NOTICE "Clock: deleting leap second "
-                                       "23:59:59 UTC\n");
-               }
-               break;
-       case TIME_OOP:
-               time_state = TIME_WAIT;
-               break;
-       case TIME_WAIT:
-               if (!(time_status & (STA_INS | STA_DEL)))
-               time_state = TIME_OK;
-       }
-
-       /*
-        * Compute the phase adjustment for the next second. In PLL mode, the
-        * offset is reduced by a fixed factor times the time constant. In FLL
-        * mode the offset is used directly. In either mode, the maximum phase
-        * adjustment for each second is clamped so as to spread the adjustment
-        * over not more than the number of seconds between updates.
-        */
-       ltemp = time_offset;
-       if (!(time_status & STA_FLL))
-               ltemp = shift_right(ltemp, SHIFT_KG + time_constant);
-       ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE);
-       ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE);
-       time_offset -= ltemp;
-       time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE);
-
-       /*
-        * Compute the frequency estimate and additional phase adjustment due
-        * to frequency error for the next second.
-        */
-       ltemp = time_freq;
-       time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE));
-
-#if HZ == 100
-       /*
-        * Compensate for (HZ==100) != (1 << SHIFT_HZ).  Add 25% and 3.125% to
-        * get 128.125; => only 0.125% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5);
-#endif
-#if HZ == 250
-       /*
-        * Compensate for (HZ==250) != (1 << SHIFT_HZ).  Add 1.5625% and
-        * 0.78125% to get 255.85938; => only 0.05% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
-#endif
-#if HZ == 1000
-       /*
-        * Compensate for (HZ==1000) != (1 << SHIFT_HZ).  Add 1.5625% and
-        * 0.78125% to get 1023.4375; => only 0.05% error (p. 14)
-        */
-       time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7);
-#endif
-}
-
-/*
- * Returns how many microseconds we need to add to xtime this tick
- * in doing an adjustment requested with adjtime.
- */
-static long adjtime_adjustment(void)
-{
-       long time_adjust_step;
-
-       time_adjust_step = time_adjust;
-       if (time_adjust_step) {
-               /*
-                * We are doing an adjtime thing.  Prepare time_adjust_step to
-                * be within bounds.  Note that a positive time_adjust means we
-                * want the clock to run faster.
-                *
-                * Limit the amount of the step to be in the range
-                * -tickadj .. +tickadj
-                */
-               time_adjust_step = min(time_adjust_step, (long)tickadj);
-               time_adjust_step = max(time_adjust_step, (long)-tickadj);
-       }
-       return time_adjust_step;
-}
-
-/* in the NTP reference this is called "hardclock()" */
-static void update_ntp_one_tick(void)
-{
-       long time_adjust_step;
-
-       time_adjust_step = adjtime_adjustment();
-       if (time_adjust_step)
-               /* Reduce by this step the amount of time left  */
-               time_adjust -= time_adjust_step;
-
-       /* Changes by adjtime() do not take effect till next tick. */
-       if (time_next_adjust != 0) {
-               time_adjust = time_next_adjust;
-               time_next_adjust = 0;
-       }
-}
-
-/*
- * Return how long ticks are at the moment, that is, how much time
- * update_wall_time_one_tick will add to xtime next time we call it
- * (assuming no calls to do_adjtimex in the meantime).
- * The return value is in fixed-point nanoseconds shifted by the
- * specified number of bits to the right of the binary point.
- * This function has no side-effects.
- */
-u64 current_tick_length(void)
-{
-       long delta_nsec;
-       u64 ret;
-
-       /* calculate the finest interval NTP will allow.
-        *    ie: nanosecond value shifted by (SHIFT_SCALE - 10)
-        */
-       delta_nsec = tick_nsec + adjtime_adjustment() * 1000;
-       ret = (u64)delta_nsec << TICK_LENGTH_SHIFT;
-       ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10));
-
-       return ret;
-}
-
-/* XXX - all of this timekeeping code should be later moved to time.c */
-#include <linux/clocksource.h>
-static struct clocksource *clock; /* pointer to current clocksource */
-
-#ifdef CONFIG_GENERIC_TIME
-/**
- * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook
- *
- * private function, must hold xtime_lock lock when being
- * called. Returns the number of nanoseconds since the
- * last call to update_wall_time() (adjusted by NTP scaling)
- */
-static inline s64 __get_nsec_offset(void)
-{
-       cycle_t cycle_now, cycle_delta;
-       s64 ns_offset;
-
-       /* read clocksource: */
-       cycle_now = clocksource_read(clock);
-
-       /* calculate the delta since the last update_wall_time: */
-       cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
-
-       /* convert to nanoseconds: */
-       ns_offset = cyc2ns(clock, cycle_delta);
-
-       return ns_offset;
-}
-
-/**
- * __get_realtime_clock_ts - Returns the time of day in a timespec
- * @ts:                pointer to the timespec to be set
- *
- * Returns the time of day in a timespec. Used by
- * do_gettimeofday() and get_realtime_clock_ts().
- */
-static inline void __get_realtime_clock_ts(struct timespec *ts)
-{
-       unsigned long seq;
-       s64 nsecs;
-
-       do {
-               seq = read_seqbegin(&xtime_lock);
-
-               *ts = xtime;
-               nsecs = __get_nsec_offset();
-
-       } while (read_seqretry(&xtime_lock, seq));
-
-       timespec_add_ns(ts, nsecs);
-}
-
-/**
- * getnstimeofday - Returns the time of day in a timespec
- * @ts:                pointer to the timespec to be set
- *
- * Returns the time of day in a timespec.
- */
-void getnstimeofday(struct timespec *ts)
-{
-       __get_realtime_clock_ts(ts);
-}
-
-EXPORT_SYMBOL(getnstimeofday);
-
-#ifndef CONFIG_XEN
-/**
- * do_gettimeofday - Returns the time of day in a timeval
- * @tv:                pointer to the timeval to be set
- *
- * NOTE: Users should be converted to using get_realtime_clock_ts()
- */
-void do_gettimeofday(struct timeval *tv)
-{
-       struct timespec now;
-
-       __get_realtime_clock_ts(&now);
-       tv->tv_sec = now.tv_sec;
-       tv->tv_usec = now.tv_nsec/1000;
-}
-
-EXPORT_SYMBOL(do_gettimeofday);
-/**
- * do_settimeofday - Sets the time of day
- * @tv:                pointer to the timespec variable containing the new time
- *
- * Sets the time of day to the new time and update NTP and notify hrtimers
- */
-int do_settimeofday(struct timespec *tv)
-{
-       unsigned long flags;
-       time_t wtm_sec, sec = tv->tv_sec;
-       long wtm_nsec, nsec = tv->tv_nsec;
-
-       if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
-               return -EINVAL;
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-
-       nsec -= __get_nsec_offset();
-
-       wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
-       wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
-
-       set_normalized_timespec(&xtime, sec, nsec);
-       set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
-
-       clock->error = 0;
-       ntp_clear();
-
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-
-       /* signal hrtimers about time change */
-       clock_was_set();
-
-       return 0;
-}
-
-EXPORT_SYMBOL(do_settimeofday);
-#endif
-
-/**
- * change_clocksource - Swaps clocksources if a new one is available
- *
- * Accumulates current time interval and initializes new clocksource
- */
-static int change_clocksource(void)
-{
-       struct clocksource *new;
-       cycle_t now;
-       u64 nsec;
-       new = clocksource_get_next();
-       if (clock != new) {
-               now = clocksource_read(new);
-               nsec =  __get_nsec_offset();
-               timespec_add_ns(&xtime, nsec);
-
-               clock = new;
-               clock->cycle_last = now;
-               printk(KERN_INFO "Time: %s clocksource has been installed.\n",
-                                       clock->name);
-               return 1;
-       } else if (clock->update_callback) {
-               return clock->update_callback();
-       }
-       return 0;
-}
-#else
-#define change_clocksource() (0)
-#endif
-
-/**
- * timeofday_is_continuous - check to see if timekeeping is free running
- */
-int timekeeping_is_continuous(void)
-{
-       unsigned long seq;
-       int ret;
-
-       do {
-               seq = read_seqbegin(&xtime_lock);
-
-               ret = clock->is_continuous;
-
-       } while (read_seqretry(&xtime_lock, seq));
-
-       return ret;
-}
-
-/*
- * timekeeping_init - Initializes the clocksource and common timekeeping values
- */
-void __init timekeeping_init(void)
-{
-       unsigned long flags;
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-       clock = clocksource_get_next();
-       clocksource_calculate_interval(clock, tick_nsec);
-       clock->cycle_last = clocksource_read(clock);
-       ntp_clear();
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-}
-
-
-static int timekeeping_suspended;
-/*
- * timekeeping_resume - Resumes the generic timekeeping subsystem.
- * @dev:       unused
- *
- * This is for the generic clocksource timekeeping.
- * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are
- * still managed by arch specific suspend/resume code.
- */
-static int timekeeping_resume(struct sys_device *dev)
-{
-       unsigned long flags;
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-       /* restart the last cycle value */
-       clock->cycle_last = clocksource_read(clock);
-       clock->error = 0;
-       timekeeping_suspended = 0;
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-       return 0;
-}
-
-static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
-{
-       unsigned long flags;
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-       timekeeping_suspended = 1;
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-       return 0;
-}
-
-/* sysfs resume/suspend bits for timekeeping */
-static struct sysdev_class timekeeping_sysclass = {
-       .resume         = timekeeping_resume,
-       .suspend        = timekeeping_suspend,
-       set_kset_name("timekeeping"),
-};
-
-static struct sys_device device_timer = {
-       .id             = 0,
-       .cls            = &timekeeping_sysclass,
-};
-
-static int __init timekeeping_init_device(void)
-{
-       int error = sysdev_class_register(&timekeeping_sysclass);
-       if (!error)
-               error = sysdev_register(&device_timer);
-       return error;
-}
-
-device_initcall(timekeeping_init_device);
-
-/*
- * If the error is already larger, we look ahead even further
- * to compensate for late or lost adjustments.
- */
-static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 
*offset)
-{
-       s64 tick_error, i;
-       u32 look_ahead, adj;
-       s32 error2, mult;
-
-       /*
-        * Use the current error value to determine how much to look ahead.
-        * The larger the error the slower we adjust for it to avoid problems
-        * with losing too many ticks, otherwise we would overadjust and
-        * produce an even larger error.  The smaller the adjustment the
-        * faster we try to adjust for it, as lost ticks can do less harm
-        * here.  This is tuned so that an error of about 1 msec is adusted
-        * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
-        */
-       error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ);
-       error2 = abs(error2);
-       for (look_ahead = 0; error2 > 0; look_ahead++)
-               error2 >>= 2;
-
-       /*
-        * Now calculate the error in (1 << look_ahead) ticks, but first
-        * remove the single look ahead already included in the error.
-        */
-       tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift 
+ 1);
-       tick_error -= clock->xtime_interval >> 1;
-       error = ((error - tick_error) >> look_ahead) + tick_error;
-
-       /* Finally calculate the adjustment shift value.  */
-       i = *interval;
-       mult = 1;
-       if (error < 0) {
-               error = -error;
-               *interval = -*interval;
-               *offset = -*offset;
-               mult = -1;
-       }
-       for (adj = 0; error > i; adj++)
-               error >>= 1;
-
-       *interval <<= adj;
-       *offset <<= adj;
-       return mult << adj;
-}
-
-/*
- * Adjust the multiplier to reduce the error value,
- * this is optimized for the most common adjustments of -1,0,1,
- * for other values we can do a bit more work.
- */
-static void clocksource_adjust(struct clocksource *clock, s64 offset)
-{
-       s64 error, interval = clock->cycle_interval;
-       int adj;
-
-       error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1);
-       if (error > interval) {
-               error >>= 2;
-               if (likely(error <= interval))
-                       adj = 1;
-               else
-                       adj = clocksource_bigadjust(error, &interval, &offset);
-       } else if (error < -interval) {
-               error >>= 2;
-               if (likely(error >= -interval)) {
-                       adj = -1;
-                       interval = -interval;
-                       offset = -offset;
-               } else
-                       adj = clocksource_bigadjust(error, &interval, &offset);
-       } else
-               return;
-
-       clock->mult += adj;
-       clock->xtime_interval += interval;
-       clock->xtime_nsec -= offset;
-       clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - 
clock->shift);
-}
-
-/*
- * update_wall_time - Uses the current clocksource to increment the wall time
- *
- * Called from the timer interrupt, must hold a write on xtime_lock.
- */
-static void update_wall_time(void)
-{
-       cycle_t offset;
-
-       /* Make sure we're fully resumed: */
-       if (unlikely(timekeeping_suspended))
-               return;
-
-#ifdef CONFIG_GENERIC_TIME
-       offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask;
-#else
-       offset = clock->cycle_interval;
-#endif
-       clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift;
-
-       /* normally this loop will run just once, however in the
-        * case of lost or late ticks, it will accumulate correctly.
-        */
-       while (offset >= clock->cycle_interval) {
-               /* accumulate one interval */
-               clock->xtime_nsec += clock->xtime_interval;
-               clock->cycle_last += clock->cycle_interval;
-               offset -= clock->cycle_interval;
-
-               if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) {
-                       clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift;
-                       xtime.tv_sec++;
-                       second_overflow();
-               }
-
-               /* interpolator bits */
-               time_interpolator_update(clock->xtime_interval
-                                               >> clock->shift);
-               /* increment the NTP state machine */
-               update_ntp_one_tick();
-
-               /* accumulate error between NTP and clock interval */
-               clock->error += current_tick_length();
-               clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - 
clock->shift);
-       }
-
-       /* correct the clock when NTP error is too big */
-       clocksource_adjust(clock, offset);
-
-       /* store full nanoseconds into xtime */
-       xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift;
-       clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift;
-
-       /* check to see if there is a new clocksource to use */
-       if (change_clocksource()) {
-               clock->error = 0;
-               clock->xtime_nsec = 0;
-               clocksource_calculate_interval(clock, tick_nsec);
-       }
-}
-
-/*
- * Called from the timer interrupt handler to charge one tick to the current 
- * process.  user_tick is 1 if the tick is user time, 0 for system.
- */
-void update_process_times(int user_tick)
-{
-       struct task_struct *p = current;
-       int cpu = smp_processor_id();
-
-       /* Note: this timer irq context must be accounted for as well. */
-       if (user_tick)
-               account_user_time(p, jiffies_to_cputime(1));
-       else
-               account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1));
-       run_local_timers();
-       if (rcu_pending(cpu))
-               rcu_check_callbacks(cpu, user_tick);
-       scheduler_tick();
-       run_posix_cpu_timers(p);
-}
-
-/*
- * Nr of active tasks - counted in fixed-point numbers
- */
-static unsigned long count_active_tasks(void)
-{
-       return nr_active() * FIXED_1;
-}
-
-/*
- * Hmm.. Changed this, as the GNU make sources (load.c) seems to
- * imply that avenrun[] is the standard name for this kind of thing.
- * Nothing else seems to be standardized: the fractional size etc
- * all seem to differ on different machines.
- *
- * Requires xtime_lock to access.
- */
-unsigned long avenrun[3];
-
-EXPORT_SYMBOL(avenrun);
-
-/*
- * calc_load - given tick count, update the avenrun load estimates.
- * This is called while holding a write_lock on xtime_lock.
- */
-static inline void calc_load(unsigned long ticks)
-{
-       unsigned long active_tasks; /* fixed-point */
-       static int count = LOAD_FREQ;
-
-       count -= ticks;
-       if (count < 0) {
-               count += LOAD_FREQ;
-               active_tasks = count_active_tasks();
-               CALC_LOAD(avenrun[0], EXP_1, active_tasks);
-               CALC_LOAD(avenrun[1], EXP_5, active_tasks);
-               CALC_LOAD(avenrun[2], EXP_15, active_tasks);
-       }
-}
-
-/* jiffies at the most recent update of wall time */
-unsigned long wall_jiffies = INITIAL_JIFFIES;
-
-/*
- * This read-write spinlock protects us from races in SMP while
- * playing with xtime and avenrun.
- */
-#ifndef ARCH_HAVE_XTIME_LOCK
-__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
-
-EXPORT_SYMBOL(xtime_lock);
-#endif
-
-/*
- * This function runs timers and the timer-tq in bottom half context.
- */
-static void run_timer_softirq(struct softirq_action *h)
-{
-       tvec_base_t *base = __get_cpu_var(tvec_bases);
-
-       hrtimer_run_queues();
-       if (time_after_eq(jiffies, base->timer_jiffies))
-               __run_timers(base);
-}
-
-/*
- * Called by the local, per-CPU timer interrupt on SMP.
- */
-void run_local_timers(void)
-{
-       raise_softirq(TIMER_SOFTIRQ);
-       softlockup_tick();
-}
-
-/*
- * Called by the timer interrupt. xtime_lock must already be taken
- * by the timer IRQ!
- */
-static inline void update_times(void)
-{
-       unsigned long ticks;
-
-       ticks = jiffies - wall_jiffies;
-       wall_jiffies += ticks;
-       update_wall_time();
-       calc_load(ticks);
-}
-  
-/*
- * The 64-bit jiffies value is not atomic - you MUST NOT read it
- * without sampling the sequence number in xtime_lock.
- * jiffies is defined in the linker script...
- */
-
-void do_timer(struct pt_regs *regs)
-{
-       jiffies_64++;
-       /* prevent loading jiffies before storing new jiffies_64 value. */
-       barrier();
-       update_times();
-}
-
-#ifdef __ARCH_WANT_SYS_ALARM
-
-/*
- * For backwards compatibility?  This can be done in libc so Alpha
- * and all newer ports shouldn't need it.
- */
-asmlinkage unsigned long sys_alarm(unsigned int seconds)
-{
-       return alarm_setitimer(seconds);
-}
-
-#endif
-
-#ifndef __alpha__
-
-/*
- * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
- * should be moved into arch/i386 instead?
- */
-
-/**
- * sys_getpid - return the thread group id of the current process
- *
- * Note, despite the name, this returns the tgid not the pid.  The tgid and
- * the pid are identical unless CLONE_THREAD was specified on clone() in
- * which case the tgid is the same in all threads of the same group.
- *
- * This is SMP safe as current->tgid does not change.
- */
-asmlinkage long sys_getpid(void)
-{
-       return current->tgid;
-}
-
-/*
- * Accessing ->real_parent is not SMP-safe, it could
- * change from under us. However, we can use a stale
- * value of ->real_parent under rcu_read_lock(), see
- * release_task()->call_rcu(delayed_put_task_struct).
- */
-asmlinkage long sys_getppid(void)
-{
-       int pid;
-
-       rcu_read_lock();
-       pid = rcu_dereference(current->real_parent)->tgid;
-       rcu_read_unlock();
-
-       return pid;
-}
-
-asmlinkage long sys_getuid(void)
-{
-       /* Only we change this so SMP safe */
-       return current->uid;
-}
-
-asmlinkage long sys_geteuid(void)
-{
-       /* Only we change this so SMP safe */
-       return current->euid;
-}
-
-asmlinkage long sys_getgid(void)
-{
-       /* Only we change this so SMP safe */
-       return current->gid;
-}
-
-asmlinkage long sys_getegid(void)
-{
-       /* Only we change this so SMP safe */
-       return  current->egid;
-}
-
-#endif
-
-static void process_timeout(unsigned long __data)
-{
-       wake_up_process((struct task_struct *)__data);
-}
-
-/**
- * schedule_timeout - sleep until timeout
- * @timeout: timeout value in jiffies
- *
- * Make the current task sleep until @timeout jiffies have
- * elapsed. The routine will return immediately unless
- * the current task state has been set (see set_current_state()).
- *
- * You can set the task state as follows -
- *
- * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
- * pass before the routine returns. The routine will return 0
- *
- * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
- * delivered to the current task. In this case the remaining time
- * in jiffies will be returned, or 0 if the timer expired in time
- *
- * The current task state is guaranteed to be TASK_RUNNING when this
- * routine returns.
- *
- * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
- * the CPU away without a bound on the timeout. In this case the return
- * value will be %MAX_SCHEDULE_TIMEOUT.
- *
- * In all cases the return value is guaranteed to be non-negative.
- */
-fastcall signed long __sched schedule_timeout(signed long timeout)
-{
-       struct timer_list timer;
-       unsigned long expire;
-
-       switch (timeout)
-       {
-       case MAX_SCHEDULE_TIMEOUT:
-               /*
-                * These two special cases are useful to be comfortable
-                * in the caller. Nothing more. We could take
-                * MAX_SCHEDULE_TIMEOUT from one of the negative value
-                * but I' d like to return a valid offset (>=0) to allow
-                * the caller to do everything it want with the retval.
-                */
-               schedule();
-               goto out;
-       default:
-               /*
-                * Another bit of PARANOID. Note that the retval will be
-                * 0 since no piece of kernel is supposed to do a check
-                * for a negative retval of schedule_timeout() (since it
-                * should never happens anyway). You just have the printk()
-                * that will tell you if something is gone wrong and where.
-                */
-               if (timeout < 0)
-               {
-                       printk(KERN_ERR "schedule_timeout: wrong timeout "
-                               "value %lx from %p\n", timeout,
-                               __builtin_return_address(0));
-                       current->state = TASK_RUNNING;
-                       goto out;
-               }
-       }
-
-       expire = timeout + jiffies;
-
-       setup_timer(&timer, process_timeout, (unsigned long)current);
-       __mod_timer(&timer, expire);
-       schedule();
-       del_singleshot_timer_sync(&timer);
-
-       timeout = expire - jiffies;
-
- out:
-       return timeout < 0 ? 0 : timeout;
-}
-EXPORT_SYMBOL(schedule_timeout);
-
-/*
- * We can use __set_current_state() here because schedule_timeout() calls
- * schedule() unconditionally.
- */
-signed long __sched schedule_timeout_interruptible(signed long timeout)
-{
-       __set_current_state(TASK_INTERRUPTIBLE);
-       return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_interruptible);
-
-signed long __sched schedule_timeout_uninterruptible(signed long timeout)
-{
-       __set_current_state(TASK_UNINTERRUPTIBLE);
-       return schedule_timeout(timeout);
-}
-EXPORT_SYMBOL(schedule_timeout_uninterruptible);
-
-/* Thread ID - the internal kernel "pid" */
-asmlinkage long sys_gettid(void)
-{
-       return current->pid;
-}
-
-/*
- * sys_sysinfo - fill in sysinfo struct
- */ 
-asmlinkage long sys_sysinfo(struct sysinfo __user *info)
-{
-       struct sysinfo val;
-       unsigned long mem_total, sav_total;
-       unsigned int mem_unit, bitcount;
-       unsigned long seq;
-
-       memset((char *)&val, 0, sizeof(struct sysinfo));
-
-       do {
-               struct timespec tp;
-               seq = read_seqbegin(&xtime_lock);
-
-               /*
-                * This is annoying.  The below is the same thing
-                * posix_get_clock_monotonic() does, but it wants to
-                * take the lock which we want to cover the loads stuff
-                * too.
-                */
-
-               getnstimeofday(&tp);
-               tp.tv_sec += wall_to_monotonic.tv_sec;
-               tp.tv_nsec += wall_to_monotonic.tv_nsec;
-               if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
-                       tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
-                       tp.tv_sec++;
-               }
-               val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
-
-               val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
-               val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
-               val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
-
-               val.procs = nr_threads;
-       } while (read_seqretry(&xtime_lock, seq));
-
-       si_meminfo(&val);
-       si_swapinfo(&val);
-
-       /*
-        * If the sum of all the available memory (i.e. ram + swap)
-        * is less than can be stored in a 32 bit unsigned long then
-        * we can be binary compatible with 2.2.x kernels.  If not,
-        * well, in that case 2.2.x was broken anyways...
-        *
-        *  -Erik Andersen <andersee@xxxxxxxxxx>
-        */
-
-       mem_total = val.totalram + val.totalswap;
-       if (mem_total < val.totalram || mem_total < val.totalswap)
-               goto out;
-       bitcount = 0;
-       mem_unit = val.mem_unit;
-       while (mem_unit > 1) {
-               bitcount++;
-               mem_unit >>= 1;
-               sav_total = mem_total;
-               mem_total <<= 1;
-               if (mem_total < sav_total)
-                       goto out;
-       }
-
-       /*
-        * If mem_total did not overflow, multiply all memory values by
-        * val.mem_unit and set it to 1.  This leaves things compatible
-        * with 2.2.x, and also retains compatibility with earlier 2.4.x
-        * kernels...
-        */
-
-       val.mem_unit = 1;
-       val.totalram <<= bitcount;
-       val.freeram <<= bitcount;
-       val.sharedram <<= bitcount;
-       val.bufferram <<= bitcount;
-       val.totalswap <<= bitcount;
-       val.freeswap <<= bitcount;
-       val.totalhigh <<= bitcount;
-       val.freehigh <<= bitcount;
-
- out:
-       if (copy_to_user(info, &val, sizeof(struct sysinfo)))
-               return -EFAULT;
-
-       return 0;
-}
-
-/*
- * lockdep: we want to track each per-CPU base as a separate lock-class,
- * but timer-bases are kmalloc()-ed, so we need to attach separate
- * keys to them:
- */
-static struct lock_class_key base_lock_keys[NR_CPUS];
-
-static int __devinit init_timers_cpu(int cpu)
-{
-       int j;
-       tvec_base_t *base;
-       static char __devinitdata tvec_base_done[NR_CPUS];
-
-       if (!tvec_base_done[cpu]) {
-               static char boot_done;
-
-               if (boot_done) {
-                       /*
-                        * The APs use this path later in boot
-                        */
-                       base = kmalloc_node(sizeof(*base), GFP_KERNEL,
-                                               cpu_to_node(cpu));
-                       if (!base)
-                               return -ENOMEM;
-                       memset(base, 0, sizeof(*base));
-                       per_cpu(tvec_bases, cpu) = base;
-               } else {
-                       /*
-                        * This is for the boot CPU - we use compile-time
-                        * static initialisation because per-cpu memory isn't
-                        * ready yet and because the memory allocators are not
-                        * initialised either.
-                        */
-                       boot_done = 1;
-                       base = &boot_tvec_bases;
-               }
-               tvec_base_done[cpu] = 1;
-       } else {
-               base = per_cpu(tvec_bases, cpu);
-       }
-
-       spin_lock_init(&base->lock);
-       lockdep_set_class(&base->lock, base_lock_keys + cpu);
-
-       for (j = 0; j < TVN_SIZE; j++) {
-               INIT_LIST_HEAD(base->tv5.vec + j);
-               INIT_LIST_HEAD(base->tv4.vec + j);
-               INIT_LIST_HEAD(base->tv3.vec + j);
-               INIT_LIST_HEAD(base->tv2.vec + j);
-       }
-       for (j = 0; j < TVR_SIZE; j++)
-               INIT_LIST_HEAD(base->tv1.vec + j);
-
-       base->timer_jiffies = jiffies;
-       return 0;
-}
-
-#ifdef CONFIG_HOTPLUG_CPU
-static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head)
-{
-       struct timer_list *timer;
-
-       while (!list_empty(head)) {
-               timer = list_entry(head->next, struct timer_list, entry);
-               detach_timer(timer, 0);
-               timer->base = new_base;
-               internal_add_timer(new_base, timer);
-       }
-}
-
-static void __devinit migrate_timers(int cpu)
-{
-       tvec_base_t *old_base;
-       tvec_base_t *new_base;
-       int i;
-
-       BUG_ON(cpu_online(cpu));
-       old_base = per_cpu(tvec_bases, cpu);
-       new_base = get_cpu_var(tvec_bases);
-
-       local_irq_disable();
-       spin_lock(&new_base->lock);
-       spin_lock(&old_base->lock);
-
-       BUG_ON(old_base->running_timer);
-
-       for (i = 0; i < TVR_SIZE; i++)
-               migrate_timer_list(new_base, old_base->tv1.vec + i);
-       for (i = 0; i < TVN_SIZE; i++) {
-               migrate_timer_list(new_base, old_base->tv2.vec + i);
-               migrate_timer_list(new_base, old_base->tv3.vec + i);
-               migrate_timer_list(new_base, old_base->tv4.vec + i);
-               migrate_timer_list(new_base, old_base->tv5.vec + i);
-       }
-
-       spin_unlock(&old_base->lock);
-       spin_unlock(&new_base->lock);
-       local_irq_enable();
-       put_cpu_var(tvec_bases);
-}
-#endif /* CONFIG_HOTPLUG_CPU */
-
-static int __cpuinit timer_cpu_notify(struct notifier_block *self,
-                               unsigned long action, void *hcpu)
-{
-       long cpu = (long)hcpu;
-       switch(action) {
-       case CPU_UP_PREPARE:
-               if (init_timers_cpu(cpu) < 0)
-                       return NOTIFY_BAD;
-               break;
-#ifdef CONFIG_HOTPLUG_CPU
-       case CPU_DEAD:
-               migrate_timers(cpu);
-               break;
-#endif
-       default:
-               break;
-       }
-       return NOTIFY_OK;
-}
-
-static struct notifier_block __cpuinitdata timers_nb = {
-       .notifier_call  = timer_cpu_notify,
-};
-
-
-void __init init_timers(void)
-{
-       timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
-                               (void *)(long)smp_processor_id());
-       register_cpu_notifier(&timers_nb);
-       open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL);
-}
-
-#ifdef CONFIG_TIME_INTERPOLATION
-
-struct time_interpolator *time_interpolator __read_mostly;
-static struct time_interpolator *time_interpolator_list __read_mostly;
-static DEFINE_SPINLOCK(time_interpolator_lock);
-
-static inline u64 time_interpolator_get_cycles(unsigned int src)
-{
-       unsigned long (*x)(void);
-
-       switch (src)
-       {
-               case TIME_SOURCE_FUNCTION:
-                       x = time_interpolator->addr;
-                       return x();
-
-               case TIME_SOURCE_MMIO64 :
-                       return readq_relaxed((void __iomem 
*)time_interpolator->addr);
-
-               case TIME_SOURCE_MMIO32 :
-                       return readl_relaxed((void __iomem 
*)time_interpolator->addr);
-
-               default: return get_cycles();
-       }
-}
-
-static inline u64 time_interpolator_get_counter(int writelock)
-{
-       unsigned int src = time_interpolator->source;
-
-       if (time_interpolator->jitter)
-       {
-               u64 lcycle;
-               u64 now;
-
-               do {
-                       lcycle = time_interpolator->last_cycle;
-                       now = time_interpolator_get_cycles(src);
-                       if (lcycle && time_after(lcycle, now))
-                               return lcycle;
-
-                       /* When holding the xtime write lock, there's no need
-                        * to add the overhead of the cmpxchg.  Readers are
-                        * force to retry until the write lock is released.
-                        */
-                       if (writelock) {
-                               time_interpolator->last_cycle = now;
-                               return now;
-                       }
-                       /* Keep track of the last timer value returned. The use 
of cmpxchg here
-                        * will cause contention in an SMP environment.
-                        */
-               } while (unlikely(cmpxchg(&time_interpolator->last_cycle, 
lcycle, now) != lcycle));
-               return now;
-       }
-       else
-               return time_interpolator_get_cycles(src);
-}
-
-void time_interpolator_reset(void)
-{
-       time_interpolator->offset = 0;
-       time_interpolator->last_counter = time_interpolator_get_counter(1);
-}
-
-#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * 
(i)->nsec_per_cyc) >> (i)->shift)
-
-unsigned long time_interpolator_get_offset(void)
-{
-       /* If we do not have a time interpolator set up then just return zero */
-       if (!time_interpolator)
-               return 0;
-
-       return time_interpolator->offset +
-               GET_TI_NSECS(time_interpolator_get_counter(0), 
time_interpolator);
-}
-
-#define INTERPOLATOR_ADJUST 65536
-#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST
-
-static void time_interpolator_update(long delta_nsec)
-{
-       u64 counter;
-       unsigned long offset;
-
-       /* If there is no time interpolator set up then do nothing */
-       if (!time_interpolator)
-               return;
-
-       /*
-        * The interpolator compensates for late ticks by accumulating the late
-        * time in time_interpolator->offset. A tick earlier than expected will
-        * lead to a reset of the offset and a corresponding jump of the clock
-        * forward. Again this only works if the interpolator clock is running
-        * slightly slower than the regular clock and the tuning logic insures
-        * that.
-        */
-
-       counter = time_interpolator_get_counter(1);
-       offset = time_interpolator->offset +
-                       GET_TI_NSECS(counter, time_interpolator);
-
-       if (delta_nsec < 0 || (unsigned long) delta_nsec < offset)
-               time_interpolator->offset = offset - delta_nsec;
-       else {
-               time_interpolator->skips++;
-               time_interpolator->ns_skipped += delta_nsec - offset;
-               time_interpolator->offset = 0;
-       }
-       time_interpolator->last_counter = counter;
-
-       /* Tuning logic for time interpolator invoked every minute or so.
-        * Decrease interpolator clock speed if no skips occurred and an offset 
is carried.
-        * Increase interpolator clock speed if we skip too much time.
-        */
-       if (jiffies % INTERPOLATOR_ADJUST == 0)
-       {
-               if (time_interpolator->skips == 0 && time_interpolator->offset 
> tick_nsec)
-                       time_interpolator->nsec_per_cyc--;
-               if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && 
time_interpolator->offset == 0)
-                       time_interpolator->nsec_per_cyc++;
-               time_interpolator->skips = 0;
-               time_interpolator->ns_skipped = 0;
-       }
-}
-
-static inline int
-is_better_time_interpolator(struct time_interpolator *new)
-{
-       if (!time_interpolator)
-               return 1;
-       return new->frequency > 2*time_interpolator->frequency ||
-           (unsigned long)new->drift < (unsigned long)time_interpolator->drift;
-}
-
-void
-register_time_interpolator(struct time_interpolator *ti)
-{
-       unsigned long flags;
-
-       /* Sanity check */
-       BUG_ON(ti->frequency == 0 || ti->mask == 0);
-
-       ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency;
-       spin_lock(&time_interpolator_lock);
-       write_seqlock_irqsave(&xtime_lock, flags);
-       if (is_better_time_interpolator(ti)) {
-               time_interpolator = ti;
-               time_interpolator_reset();
-       }
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-
-       ti->next = time_interpolator_list;
-       time_interpolator_list = ti;
-       spin_unlock(&time_interpolator_lock);
-}
-
-void
-unregister_time_interpolator(struct time_interpolator *ti)
-{
-       struct time_interpolator *curr, **prev;
-       unsigned long flags;
-
-       spin_lock(&time_interpolator_lock);
-       prev = &time_interpolator_list;
-       for (curr = *prev; curr; curr = curr->next) {
-               if (curr == ti) {
-                       *prev = curr->next;
-                       break;
-               }
-               prev = &curr->next;
-       }
-
-       write_seqlock_irqsave(&xtime_lock, flags);
-       if (ti == time_interpolator) {
-               /* we lost the best time-interpolator: */
-               time_interpolator = NULL;
-               /* find the next-best interpolator */
-               for (curr = time_interpolator_list; curr; curr = curr->next)
-                       if (is_better_time_interpolator(curr))
-                               time_interpolator = curr;
-               time_interpolator_reset();
-       }
-       write_sequnlock_irqrestore(&xtime_lock, flags);
-       spin_unlock(&time_interpolator_lock);
-}
-#endif /* CONFIG_TIME_INTERPOLATION */
-
-/**
- * msleep - sleep safely even with waitqueue interruptions
- * @msecs: Time in milliseconds to sleep for
- */
-void msleep(unsigned int msecs)
-{
-       unsigned long timeout = msecs_to_jiffies(msecs) + 1;
-
-       while (timeout)
-               timeout = schedule_timeout_uninterruptible(timeout);
-}
-
-EXPORT_SYMBOL(msleep);
-
-/**
- * msleep_interruptible - sleep waiting for signals
- * @msecs: Time in milliseconds to sleep for
- */
-unsigned long msleep_interruptible(unsigned int msecs)
-{
-       unsigned long timeout = msecs_to_jiffies(msecs) + 1;
-
-       while (timeout && !signal_pending(current))
-               timeout = schedule_timeout_interruptible(timeout);
-       return jiffies_to_msecs(timeout);
-}
-
-EXPORT_SYMBOL(msleep_interruptible);

_______________________________________________
Xen-changelog mailing list
Xen-changelog@xxxxxxxxxxxxxxxxxxx
http://lists.xensource.com/xen-changelog


 


Rackspace

Lists.xenproject.org is hosted with RackSpace, monitoring our
servers 24x7x365 and backed by RackSpace's Fanatical Support®.