[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] [Xen-changelog] [xen-unstable] [linux] Disable GENERIC_TIME until we have a xen clocksource.
# HG changeset patch # User Christian Limpach <Christian.Limpach@xxxxxxxxxxxxx> # Date 1169640176 0 # Node ID 8331aca2f29ca29704f4bafabe0e542f312d6950 # Parent c3b2443408f4d125a5e222004090fb476d30e518 [linux] Disable GENERIC_TIME until we have a xen clocksource. Signed-off-by: Christian Limpach <Christian.Limpach@xxxxxxxxxxxxx> --- linux-2.6-xen-sparse/kernel/timer.c | 1914 --------------------------------- linux-2.6-xen-sparse/arch/i386/Kconfig | 1 2 files changed, 1 insertion(+), 1914 deletions(-) diff -r c3b2443408f4 -r 8331aca2f29c linux-2.6-xen-sparse/arch/i386/Kconfig --- a/linux-2.6-xen-sparse/arch/i386/Kconfig Wed Jan 24 11:04:22 2007 +0000 +++ b/linux-2.6-xen-sparse/arch/i386/Kconfig Wed Jan 24 12:02:56 2007 +0000 @@ -16,6 +16,7 @@ config X86_32 config GENERIC_TIME bool + depends on !X86_XEN default y config LOCKDEP_SUPPORT diff -r c3b2443408f4 -r 8331aca2f29c linux-2.6-xen-sparse/kernel/timer.c --- a/linux-2.6-xen-sparse/kernel/timer.c Wed Jan 24 11:04:22 2007 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,1914 +0,0 @@ -/* - * linux/kernel/timer.c - * - * Kernel internal timers, kernel timekeeping, basic process system calls - * - * Copyright (C) 1991, 1992 Linus Torvalds - * - * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better. - * - * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 - * "A Kernel Model for Precision Timekeeping" by Dave Mills - * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to - * serialize accesses to xtime/lost_ticks). - * Copyright (C) 1998 Andrea Arcangeli - * 1999-03-10 Improved NTP compatibility by Ulrich Windl - * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love - * 2000-10-05 Implemented scalable SMP per-CPU timer handling. - * Copyright (C) 2000, 2001, 2002 Ingo Molnar - * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar - */ - -#include <linux/kernel_stat.h> -#include <linux/module.h> -#include <linux/interrupt.h> -#include <linux/percpu.h> -#include <linux/init.h> -#include <linux/mm.h> -#include <linux/swap.h> -#include <linux/notifier.h> -#include <linux/thread_info.h> -#include <linux/time.h> -#include <linux/jiffies.h> -#include <linux/posix-timers.h> -#include <linux/cpu.h> -#include <linux/syscalls.h> -#include <linux/delay.h> - -#include <asm/uaccess.h> -#include <asm/unistd.h> -#include <asm/div64.h> -#include <asm/timex.h> -#include <asm/io.h> - -#ifdef CONFIG_TIME_INTERPOLATION -static void time_interpolator_update(long delta_nsec); -#else -#define time_interpolator_update(x) -#endif - -u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES; - -EXPORT_SYMBOL(jiffies_64); - -/* - * per-CPU timer vector definitions: - */ -#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6) -#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8) -#define TVN_SIZE (1 << TVN_BITS) -#define TVR_SIZE (1 << TVR_BITS) -#define TVN_MASK (TVN_SIZE - 1) -#define TVR_MASK (TVR_SIZE - 1) - -typedef struct tvec_s { - struct list_head vec[TVN_SIZE]; -} tvec_t; - -typedef struct tvec_root_s { - struct list_head vec[TVR_SIZE]; -} tvec_root_t; - -struct tvec_t_base_s { - spinlock_t lock; - struct timer_list *running_timer; - unsigned long timer_jiffies; - tvec_root_t tv1; - tvec_t tv2; - tvec_t tv3; - tvec_t tv4; - tvec_t tv5; -} ____cacheline_aligned_in_smp; - -typedef struct tvec_t_base_s tvec_base_t; - -tvec_base_t boot_tvec_bases; -EXPORT_SYMBOL(boot_tvec_bases); -static DEFINE_PER_CPU(tvec_base_t *, tvec_bases) = &boot_tvec_bases; - -static inline void set_running_timer(tvec_base_t *base, - struct timer_list *timer) -{ -#ifdef CONFIG_SMP - base->running_timer = timer; -#endif -} - -static void internal_add_timer(tvec_base_t *base, struct timer_list *timer) -{ - unsigned long expires = timer->expires; - unsigned long idx = expires - base->timer_jiffies; - struct list_head *vec; - - if (idx < TVR_SIZE) { - int i = expires & TVR_MASK; - vec = base->tv1.vec + i; - } else if (idx < 1 << (TVR_BITS + TVN_BITS)) { - int i = (expires >> TVR_BITS) & TVN_MASK; - vec = base->tv2.vec + i; - } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) { - int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK; - vec = base->tv3.vec + i; - } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) { - int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK; - vec = base->tv4.vec + i; - } else if ((signed long) idx < 0) { - /* - * Can happen if you add a timer with expires == jiffies, - * or you set a timer to go off in the past - */ - vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK); - } else { - int i; - /* If the timeout is larger than 0xffffffff on 64-bit - * architectures then we use the maximum timeout: - */ - if (idx > 0xffffffffUL) { - idx = 0xffffffffUL; - expires = idx + base->timer_jiffies; - } - i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK; - vec = base->tv5.vec + i; - } - /* - * Timers are FIFO: - */ - list_add_tail(&timer->entry, vec); -} - -/*** - * init_timer - initialize a timer. - * @timer: the timer to be initialized - * - * init_timer() must be done to a timer prior calling *any* of the - * other timer functions. - */ -void fastcall init_timer(struct timer_list *timer) -{ - timer->entry.next = NULL; - timer->base = __raw_get_cpu_var(tvec_bases); -} -EXPORT_SYMBOL(init_timer); - -static inline void detach_timer(struct timer_list *timer, - int clear_pending) -{ - struct list_head *entry = &timer->entry; - - __list_del(entry->prev, entry->next); - if (clear_pending) - entry->next = NULL; - entry->prev = LIST_POISON2; -} - -/* - * We are using hashed locking: holding per_cpu(tvec_bases).lock - * means that all timers which are tied to this base via timer->base are - * locked, and the base itself is locked too. - * - * So __run_timers/migrate_timers can safely modify all timers which could - * be found on ->tvX lists. - * - * When the timer's base is locked, and the timer removed from list, it is - * possible to set timer->base = NULL and drop the lock: the timer remains - * locked. - */ -static tvec_base_t *lock_timer_base(struct timer_list *timer, - unsigned long *flags) -{ - tvec_base_t *base; - - for (;;) { - base = timer->base; - if (likely(base != NULL)) { - spin_lock_irqsave(&base->lock, *flags); - if (likely(base == timer->base)) - return base; - /* The timer has migrated to another CPU */ - spin_unlock_irqrestore(&base->lock, *flags); - } - cpu_relax(); - } -} - -int __mod_timer(struct timer_list *timer, unsigned long expires) -{ - tvec_base_t *base, *new_base; - unsigned long flags; - int ret = 0; - - BUG_ON(!timer->function); - - base = lock_timer_base(timer, &flags); - - if (timer_pending(timer)) { - detach_timer(timer, 0); - ret = 1; - } - - new_base = __get_cpu_var(tvec_bases); - - if (base != new_base) { - /* - * We are trying to schedule the timer on the local CPU. - * However we can't change timer's base while it is running, - * otherwise del_timer_sync() can't detect that the timer's - * handler yet has not finished. This also guarantees that - * the timer is serialized wrt itself. - */ - if (likely(base->running_timer != timer)) { - /* See the comment in lock_timer_base() */ - timer->base = NULL; - spin_unlock(&base->lock); - base = new_base; - spin_lock(&base->lock); - timer->base = base; - } - } - - timer->expires = expires; - internal_add_timer(base, timer); - spin_unlock_irqrestore(&base->lock, flags); - - return ret; -} - -EXPORT_SYMBOL(__mod_timer); - -/*** - * add_timer_on - start a timer on a particular CPU - * @timer: the timer to be added - * @cpu: the CPU to start it on - * - * This is not very scalable on SMP. Double adds are not possible. - */ -void add_timer_on(struct timer_list *timer, int cpu) -{ - tvec_base_t *base = per_cpu(tvec_bases, cpu); - unsigned long flags; - - BUG_ON(timer_pending(timer) || !timer->function); - spin_lock_irqsave(&base->lock, flags); - timer->base = base; - internal_add_timer(base, timer); - spin_unlock_irqrestore(&base->lock, flags); -} - - -/*** - * mod_timer - modify a timer's timeout - * @timer: the timer to be modified - * - * mod_timer is a more efficient way to update the expire field of an - * active timer (if the timer is inactive it will be activated) - * - * mod_timer(timer, expires) is equivalent to: - * - * del_timer(timer); timer->expires = expires; add_timer(timer); - * - * Note that if there are multiple unserialized concurrent users of the - * same timer, then mod_timer() is the only safe way to modify the timeout, - * since add_timer() cannot modify an already running timer. - * - * The function returns whether it has modified a pending timer or not. - * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an - * active timer returns 1.) - */ -int mod_timer(struct timer_list *timer, unsigned long expires) -{ - BUG_ON(!timer->function); - - /* - * This is a common optimization triggered by the - * networking code - if the timer is re-modified - * to be the same thing then just return: - */ - if (timer->expires == expires && timer_pending(timer)) - return 1; - - return __mod_timer(timer, expires); -} - -EXPORT_SYMBOL(mod_timer); - -/*** - * del_timer - deactive a timer. - * @timer: the timer to be deactivated - * - * del_timer() deactivates a timer - this works on both active and inactive - * timers. - * - * The function returns whether it has deactivated a pending timer or not. - * (ie. del_timer() of an inactive timer returns 0, del_timer() of an - * active timer returns 1.) - */ -int del_timer(struct timer_list *timer) -{ - tvec_base_t *base; - unsigned long flags; - int ret = 0; - - if (timer_pending(timer)) { - base = lock_timer_base(timer, &flags); - if (timer_pending(timer)) { - detach_timer(timer, 1); - ret = 1; - } - spin_unlock_irqrestore(&base->lock, flags); - } - - return ret; -} - -EXPORT_SYMBOL(del_timer); - -#ifdef CONFIG_SMP -/* - * This function tries to deactivate a timer. Upon successful (ret >= 0) - * exit the timer is not queued and the handler is not running on any CPU. - * - * It must not be called from interrupt contexts. - */ -int try_to_del_timer_sync(struct timer_list *timer) -{ - tvec_base_t *base; - unsigned long flags; - int ret = -1; - - base = lock_timer_base(timer, &flags); - - if (base->running_timer == timer) - goto out; - - ret = 0; - if (timer_pending(timer)) { - detach_timer(timer, 1); - ret = 1; - } -out: - spin_unlock_irqrestore(&base->lock, flags); - - return ret; -} - -/*** - * del_timer_sync - deactivate a timer and wait for the handler to finish. - * @timer: the timer to be deactivated - * - * This function only differs from del_timer() on SMP: besides deactivating - * the timer it also makes sure the handler has finished executing on other - * CPUs. - * - * Synchronization rules: callers must prevent restarting of the timer, - * otherwise this function is meaningless. It must not be called from - * interrupt contexts. The caller must not hold locks which would prevent - * completion of the timer's handler. The timer's handler must not call - * add_timer_on(). Upon exit the timer is not queued and the handler is - * not running on any CPU. - * - * The function returns whether it has deactivated a pending timer or not. - */ -int del_timer_sync(struct timer_list *timer) -{ - for (;;) { - int ret = try_to_del_timer_sync(timer); - if (ret >= 0) - return ret; - cpu_relax(); - } -} - -EXPORT_SYMBOL(del_timer_sync); -#endif - -static int cascade(tvec_base_t *base, tvec_t *tv, int index) -{ - /* cascade all the timers from tv up one level */ - struct timer_list *timer, *tmp; - struct list_head tv_list; - - list_replace_init(tv->vec + index, &tv_list); - - /* - * We are removing _all_ timers from the list, so we - * don't have to detach them individually. - */ - list_for_each_entry_safe(timer, tmp, &tv_list, entry) { - BUG_ON(timer->base != base); - internal_add_timer(base, timer); - } - - return index; -} - -/*** - * __run_timers - run all expired timers (if any) on this CPU. - * @base: the timer vector to be processed. - * - * This function cascades all vectors and executes all expired timer - * vectors. - */ -#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK) - -static inline void __run_timers(tvec_base_t *base) -{ - struct timer_list *timer; - - spin_lock_irq(&base->lock); - while (time_after_eq(jiffies, base->timer_jiffies)) { - struct list_head work_list; - struct list_head *head = &work_list; - int index = base->timer_jiffies & TVR_MASK; - - /* - * Cascade timers: - */ - if (!index && - (!cascade(base, &base->tv2, INDEX(0))) && - (!cascade(base, &base->tv3, INDEX(1))) && - !cascade(base, &base->tv4, INDEX(2))) - cascade(base, &base->tv5, INDEX(3)); - ++base->timer_jiffies; - list_replace_init(base->tv1.vec + index, &work_list); - while (!list_empty(head)) { - void (*fn)(unsigned long); - unsigned long data; - - timer = list_entry(head->next,struct timer_list,entry); - fn = timer->function; - data = timer->data; - - set_running_timer(base, timer); - detach_timer(timer, 1); - spin_unlock_irq(&base->lock); - { - int preempt_count = preempt_count(); - fn(data); - if (preempt_count != preempt_count()) { - printk(KERN_WARNING "huh, entered %p " - "with preempt_count %08x, exited" - " with %08x?\n", - fn, preempt_count, - preempt_count()); - BUG(); - } - } - spin_lock_irq(&base->lock); - } - } - set_running_timer(base, NULL); - spin_unlock_irq(&base->lock); -} - -#ifdef CONFIG_NO_IDLE_HZ -/* - * Find out when the next timer event is due to happen. This - * is used on S/390 to stop all activity when a cpus is idle. - * This functions needs to be called disabled. - */ -unsigned long next_timer_interrupt(void) -{ - tvec_base_t *base; - struct list_head *list; - struct timer_list *nte; - unsigned long expires; - unsigned long hr_expires = MAX_JIFFY_OFFSET; - ktime_t hr_delta; - tvec_t *varray[4]; - int i, j; - - hr_delta = hrtimer_get_next_event(); - if (hr_delta.tv64 != KTIME_MAX) { - struct timespec tsdelta; - tsdelta = ktime_to_timespec(hr_delta); - hr_expires = timespec_to_jiffies(&tsdelta); - if (hr_expires < 3) - return hr_expires + jiffies; - } - hr_expires += jiffies; - - base = __get_cpu_var(tvec_bases); - spin_lock(&base->lock); - expires = base->timer_jiffies + (LONG_MAX >> 1); - list = NULL; - - /* Look for timer events in tv1. */ - j = base->timer_jiffies & TVR_MASK; - do { - list_for_each_entry(nte, base->tv1.vec + j, entry) { - expires = nte->expires; - if (j < (base->timer_jiffies & TVR_MASK)) - list = base->tv2.vec + (INDEX(0)); - goto found; - } - j = (j + 1) & TVR_MASK; - } while (j != (base->timer_jiffies & TVR_MASK)); - - /* Check tv2-tv5. */ - varray[0] = &base->tv2; - varray[1] = &base->tv3; - varray[2] = &base->tv4; - varray[3] = &base->tv5; - for (i = 0; i < 4; i++) { - j = INDEX(i); - do { - if (list_empty(varray[i]->vec + j)) { - j = (j + 1) & TVN_MASK; - continue; - } - list_for_each_entry(nte, varray[i]->vec + j, entry) - if (time_before(nte->expires, expires)) - expires = nte->expires; - if (j < (INDEX(i)) && i < 3) - list = varray[i + 1]->vec + (INDEX(i + 1)); - goto found; - } while (j != (INDEX(i))); - } -found: - if (list) { - /* - * The search wrapped. We need to look at the next list - * from next tv element that would cascade into tv element - * where we found the timer element. - */ - list_for_each_entry(nte, list, entry) { - if (time_before(nte->expires, expires)) - expires = nte->expires; - } - } - spin_unlock(&base->lock); - - /* - * It can happen that other CPUs service timer IRQs and increment - * jiffies, but we have not yet got a local timer tick to process - * the timer wheels. In that case, the expiry time can be before - * jiffies, but since the high-resolution timer here is relative to - * jiffies, the default expression when high-resolution timers are - * not active, - * - * time_before(MAX_JIFFY_OFFSET + jiffies, expires) - * - * would falsely evaluate to true. If that is the case, just - * return jiffies so that we can immediately fire the local timer - */ - if (time_before(expires, jiffies)) - return jiffies; - - if (time_before(hr_expires, expires)) - return hr_expires; - - return expires; -} -#endif - -/******************************************************************/ - -/* - * Timekeeping variables - */ -unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */ -unsigned long tick_nsec = TICK_NSEC; /* ACTHZ period (nsec) */ - -/* - * The current time - * wall_to_monotonic is what we need to add to xtime (or xtime corrected - * for sub jiffie times) to get to monotonic time. Monotonic is pegged - * at zero at system boot time, so wall_to_monotonic will be negative, - * however, we will ALWAYS keep the tv_nsec part positive so we can use - * the usual normalization. - */ -struct timespec xtime __attribute__ ((aligned (16))); -struct timespec wall_to_monotonic __attribute__ ((aligned (16))); - -EXPORT_SYMBOL(xtime); - -/* Don't completely fail for HZ > 500. */ -int tickadj = 500/HZ ? : 1; /* microsecs */ - - -/* - * phase-lock loop variables - */ -/* TIME_ERROR prevents overwriting the CMOS clock */ -int time_state = TIME_OK; /* clock synchronization status */ -int time_status = STA_UNSYNC; /* clock status bits */ -long time_offset; /* time adjustment (us) */ -long time_constant = 2; /* pll time constant */ -long time_tolerance = MAXFREQ; /* frequency tolerance (ppm) */ -long time_precision = 1; /* clock precision (us) */ -long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */ -long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */ -long time_freq = (((NSEC_PER_SEC + HZ/2) % HZ - HZ/2) << SHIFT_USEC) / NSEC_PER_USEC; - /* frequency offset (scaled ppm)*/ -static long time_adj; /* tick adjust (scaled 1 / HZ) */ -long time_reftime; /* time at last adjustment (s) */ -long time_adjust; -long time_next_adjust; - -/* - * this routine handles the overflow of the microsecond field - * - * The tricky bits of code to handle the accurate clock support - * were provided by Dave Mills (Mills@xxxxxxxx) of NTP fame. - * They were originally developed for SUN and DEC kernels. - * All the kudos should go to Dave for this stuff. - * - */ -static void second_overflow(void) -{ - long ltemp; - - /* Bump the maxerror field */ - time_maxerror += time_tolerance >> SHIFT_USEC; - if (time_maxerror > NTP_PHASE_LIMIT) { - time_maxerror = NTP_PHASE_LIMIT; - time_status |= STA_UNSYNC; - } - - /* - * Leap second processing. If in leap-insert state at the end of the - * day, the system clock is set back one second; if in leap-delete - * state, the system clock is set ahead one second. The microtime() - * routine or external clock driver will insure that reported time is - * always monotonic. The ugly divides should be replaced. - */ - switch (time_state) { - case TIME_OK: - if (time_status & STA_INS) - time_state = TIME_INS; - else if (time_status & STA_DEL) - time_state = TIME_DEL; - break; - case TIME_INS: - if (xtime.tv_sec % 86400 == 0) { - xtime.tv_sec--; - wall_to_monotonic.tv_sec++; - /* - * The timer interpolator will make time change - * gradually instead of an immediate jump by one second - */ - time_interpolator_update(-NSEC_PER_SEC); - time_state = TIME_OOP; - clock_was_set(); - printk(KERN_NOTICE "Clock: inserting leap second " - "23:59:60 UTC\n"); - } - break; - case TIME_DEL: - if ((xtime.tv_sec + 1) % 86400 == 0) { - xtime.tv_sec++; - wall_to_monotonic.tv_sec--; - /* - * Use of time interpolator for a gradual change of - * time - */ - time_interpolator_update(NSEC_PER_SEC); - time_state = TIME_WAIT; - clock_was_set(); - printk(KERN_NOTICE "Clock: deleting leap second " - "23:59:59 UTC\n"); - } - break; - case TIME_OOP: - time_state = TIME_WAIT; - break; - case TIME_WAIT: - if (!(time_status & (STA_INS | STA_DEL))) - time_state = TIME_OK; - } - - /* - * Compute the phase adjustment for the next second. In PLL mode, the - * offset is reduced by a fixed factor times the time constant. In FLL - * mode the offset is used directly. In either mode, the maximum phase - * adjustment for each second is clamped so as to spread the adjustment - * over not more than the number of seconds between updates. - */ - ltemp = time_offset; - if (!(time_status & STA_FLL)) - ltemp = shift_right(ltemp, SHIFT_KG + time_constant); - ltemp = min(ltemp, (MAXPHASE / MINSEC) << SHIFT_UPDATE); - ltemp = max(ltemp, -(MAXPHASE / MINSEC) << SHIFT_UPDATE); - time_offset -= ltemp; - time_adj = ltemp << (SHIFT_SCALE - SHIFT_HZ - SHIFT_UPDATE); - - /* - * Compute the frequency estimate and additional phase adjustment due - * to frequency error for the next second. - */ - ltemp = time_freq; - time_adj += shift_right(ltemp,(SHIFT_USEC + SHIFT_HZ - SHIFT_SCALE)); - -#if HZ == 100 - /* - * Compensate for (HZ==100) != (1 << SHIFT_HZ). Add 25% and 3.125% to - * get 128.125; => only 0.125% error (p. 14) - */ - time_adj += shift_right(time_adj, 2) + shift_right(time_adj, 5); -#endif -#if HZ == 250 - /* - * Compensate for (HZ==250) != (1 << SHIFT_HZ). Add 1.5625% and - * 0.78125% to get 255.85938; => only 0.05% error (p. 14) - */ - time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); -#endif -#if HZ == 1000 - /* - * Compensate for (HZ==1000) != (1 << SHIFT_HZ). Add 1.5625% and - * 0.78125% to get 1023.4375; => only 0.05% error (p. 14) - */ - time_adj += shift_right(time_adj, 6) + shift_right(time_adj, 7); -#endif -} - -/* - * Returns how many microseconds we need to add to xtime this tick - * in doing an adjustment requested with adjtime. - */ -static long adjtime_adjustment(void) -{ - long time_adjust_step; - - time_adjust_step = time_adjust; - if (time_adjust_step) { - /* - * We are doing an adjtime thing. Prepare time_adjust_step to - * be within bounds. Note that a positive time_adjust means we - * want the clock to run faster. - * - * Limit the amount of the step to be in the range - * -tickadj .. +tickadj - */ - time_adjust_step = min(time_adjust_step, (long)tickadj); - time_adjust_step = max(time_adjust_step, (long)-tickadj); - } - return time_adjust_step; -} - -/* in the NTP reference this is called "hardclock()" */ -static void update_ntp_one_tick(void) -{ - long time_adjust_step; - - time_adjust_step = adjtime_adjustment(); - if (time_adjust_step) - /* Reduce by this step the amount of time left */ - time_adjust -= time_adjust_step; - - /* Changes by adjtime() do not take effect till next tick. */ - if (time_next_adjust != 0) { - time_adjust = time_next_adjust; - time_next_adjust = 0; - } -} - -/* - * Return how long ticks are at the moment, that is, how much time - * update_wall_time_one_tick will add to xtime next time we call it - * (assuming no calls to do_adjtimex in the meantime). - * The return value is in fixed-point nanoseconds shifted by the - * specified number of bits to the right of the binary point. - * This function has no side-effects. - */ -u64 current_tick_length(void) -{ - long delta_nsec; - u64 ret; - - /* calculate the finest interval NTP will allow. - * ie: nanosecond value shifted by (SHIFT_SCALE - 10) - */ - delta_nsec = tick_nsec + adjtime_adjustment() * 1000; - ret = (u64)delta_nsec << TICK_LENGTH_SHIFT; - ret += (s64)time_adj << (TICK_LENGTH_SHIFT - (SHIFT_SCALE - 10)); - - return ret; -} - -/* XXX - all of this timekeeping code should be later moved to time.c */ -#include <linux/clocksource.h> -static struct clocksource *clock; /* pointer to current clocksource */ - -#ifdef CONFIG_GENERIC_TIME -/** - * __get_nsec_offset - Returns nanoseconds since last call to periodic_hook - * - * private function, must hold xtime_lock lock when being - * called. Returns the number of nanoseconds since the - * last call to update_wall_time() (adjusted by NTP scaling) - */ -static inline s64 __get_nsec_offset(void) -{ - cycle_t cycle_now, cycle_delta; - s64 ns_offset; - - /* read clocksource: */ - cycle_now = clocksource_read(clock); - - /* calculate the delta since the last update_wall_time: */ - cycle_delta = (cycle_now - clock->cycle_last) & clock->mask; - - /* convert to nanoseconds: */ - ns_offset = cyc2ns(clock, cycle_delta); - - return ns_offset; -} - -/** - * __get_realtime_clock_ts - Returns the time of day in a timespec - * @ts: pointer to the timespec to be set - * - * Returns the time of day in a timespec. Used by - * do_gettimeofday() and get_realtime_clock_ts(). - */ -static inline void __get_realtime_clock_ts(struct timespec *ts) -{ - unsigned long seq; - s64 nsecs; - - do { - seq = read_seqbegin(&xtime_lock); - - *ts = xtime; - nsecs = __get_nsec_offset(); - - } while (read_seqretry(&xtime_lock, seq)); - - timespec_add_ns(ts, nsecs); -} - -/** - * getnstimeofday - Returns the time of day in a timespec - * @ts: pointer to the timespec to be set - * - * Returns the time of day in a timespec. - */ -void getnstimeofday(struct timespec *ts) -{ - __get_realtime_clock_ts(ts); -} - -EXPORT_SYMBOL(getnstimeofday); - -#ifndef CONFIG_XEN -/** - * do_gettimeofday - Returns the time of day in a timeval - * @tv: pointer to the timeval to be set - * - * NOTE: Users should be converted to using get_realtime_clock_ts() - */ -void do_gettimeofday(struct timeval *tv) -{ - struct timespec now; - - __get_realtime_clock_ts(&now); - tv->tv_sec = now.tv_sec; - tv->tv_usec = now.tv_nsec/1000; -} - -EXPORT_SYMBOL(do_gettimeofday); -/** - * do_settimeofday - Sets the time of day - * @tv: pointer to the timespec variable containing the new time - * - * Sets the time of day to the new time and update NTP and notify hrtimers - */ -int do_settimeofday(struct timespec *tv) -{ - unsigned long flags; - time_t wtm_sec, sec = tv->tv_sec; - long wtm_nsec, nsec = tv->tv_nsec; - - if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) - return -EINVAL; - - write_seqlock_irqsave(&xtime_lock, flags); - - nsec -= __get_nsec_offset(); - - wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); - wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); - - set_normalized_timespec(&xtime, sec, nsec); - set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); - - clock->error = 0; - ntp_clear(); - - write_sequnlock_irqrestore(&xtime_lock, flags); - - /* signal hrtimers about time change */ - clock_was_set(); - - return 0; -} - -EXPORT_SYMBOL(do_settimeofday); -#endif - -/** - * change_clocksource - Swaps clocksources if a new one is available - * - * Accumulates current time interval and initializes new clocksource - */ -static int change_clocksource(void) -{ - struct clocksource *new; - cycle_t now; - u64 nsec; - new = clocksource_get_next(); - if (clock != new) { - now = clocksource_read(new); - nsec = __get_nsec_offset(); - timespec_add_ns(&xtime, nsec); - - clock = new; - clock->cycle_last = now; - printk(KERN_INFO "Time: %s clocksource has been installed.\n", - clock->name); - return 1; - } else if (clock->update_callback) { - return clock->update_callback(); - } - return 0; -} -#else -#define change_clocksource() (0) -#endif - -/** - * timeofday_is_continuous - check to see if timekeeping is free running - */ -int timekeeping_is_continuous(void) -{ - unsigned long seq; - int ret; - - do { - seq = read_seqbegin(&xtime_lock); - - ret = clock->is_continuous; - - } while (read_seqretry(&xtime_lock, seq)); - - return ret; -} - -/* - * timekeeping_init - Initializes the clocksource and common timekeeping values - */ -void __init timekeeping_init(void) -{ - unsigned long flags; - - write_seqlock_irqsave(&xtime_lock, flags); - clock = clocksource_get_next(); - clocksource_calculate_interval(clock, tick_nsec); - clock->cycle_last = clocksource_read(clock); - ntp_clear(); - write_sequnlock_irqrestore(&xtime_lock, flags); -} - - -static int timekeeping_suspended; -/* - * timekeeping_resume - Resumes the generic timekeeping subsystem. - * @dev: unused - * - * This is for the generic clocksource timekeeping. - * xtime/wall_to_monotonic/jiffies/wall_jiffies/etc are - * still managed by arch specific suspend/resume code. - */ -static int timekeeping_resume(struct sys_device *dev) -{ - unsigned long flags; - - write_seqlock_irqsave(&xtime_lock, flags); - /* restart the last cycle value */ - clock->cycle_last = clocksource_read(clock); - clock->error = 0; - timekeeping_suspended = 0; - write_sequnlock_irqrestore(&xtime_lock, flags); - return 0; -} - -static int timekeeping_suspend(struct sys_device *dev, pm_message_t state) -{ - unsigned long flags; - - write_seqlock_irqsave(&xtime_lock, flags); - timekeeping_suspended = 1; - write_sequnlock_irqrestore(&xtime_lock, flags); - return 0; -} - -/* sysfs resume/suspend bits for timekeeping */ -static struct sysdev_class timekeeping_sysclass = { - .resume = timekeeping_resume, - .suspend = timekeeping_suspend, - set_kset_name("timekeeping"), -}; - -static struct sys_device device_timer = { - .id = 0, - .cls = &timekeeping_sysclass, -}; - -static int __init timekeeping_init_device(void) -{ - int error = sysdev_class_register(&timekeeping_sysclass); - if (!error) - error = sysdev_register(&device_timer); - return error; -} - -device_initcall(timekeeping_init_device); - -/* - * If the error is already larger, we look ahead even further - * to compensate for late or lost adjustments. - */ -static __always_inline int clocksource_bigadjust(s64 error, s64 *interval, s64 *offset) -{ - s64 tick_error, i; - u32 look_ahead, adj; - s32 error2, mult; - - /* - * Use the current error value to determine how much to look ahead. - * The larger the error the slower we adjust for it to avoid problems - * with losing too many ticks, otherwise we would overadjust and - * produce an even larger error. The smaller the adjustment the - * faster we try to adjust for it, as lost ticks can do less harm - * here. This is tuned so that an error of about 1 msec is adusted - * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks). - */ - error2 = clock->error >> (TICK_LENGTH_SHIFT + 22 - 2 * SHIFT_HZ); - error2 = abs(error2); - for (look_ahead = 0; error2 > 0; look_ahead++) - error2 >>= 2; - - /* - * Now calculate the error in (1 << look_ahead) ticks, but first - * remove the single look ahead already included in the error. - */ - tick_error = current_tick_length() >> (TICK_LENGTH_SHIFT - clock->shift + 1); - tick_error -= clock->xtime_interval >> 1; - error = ((error - tick_error) >> look_ahead) + tick_error; - - /* Finally calculate the adjustment shift value. */ - i = *interval; - mult = 1; - if (error < 0) { - error = -error; - *interval = -*interval; - *offset = -*offset; - mult = -1; - } - for (adj = 0; error > i; adj++) - error >>= 1; - - *interval <<= adj; - *offset <<= adj; - return mult << adj; -} - -/* - * Adjust the multiplier to reduce the error value, - * this is optimized for the most common adjustments of -1,0,1, - * for other values we can do a bit more work. - */ -static void clocksource_adjust(struct clocksource *clock, s64 offset) -{ - s64 error, interval = clock->cycle_interval; - int adj; - - error = clock->error >> (TICK_LENGTH_SHIFT - clock->shift - 1); - if (error > interval) { - error >>= 2; - if (likely(error <= interval)) - adj = 1; - else - adj = clocksource_bigadjust(error, &interval, &offset); - } else if (error < -interval) { - error >>= 2; - if (likely(error >= -interval)) { - adj = -1; - interval = -interval; - offset = -offset; - } else - adj = clocksource_bigadjust(error, &interval, &offset); - } else - return; - - clock->mult += adj; - clock->xtime_interval += interval; - clock->xtime_nsec -= offset; - clock->error -= (interval - offset) << (TICK_LENGTH_SHIFT - clock->shift); -} - -/* - * update_wall_time - Uses the current clocksource to increment the wall time - * - * Called from the timer interrupt, must hold a write on xtime_lock. - */ -static void update_wall_time(void) -{ - cycle_t offset; - - /* Make sure we're fully resumed: */ - if (unlikely(timekeeping_suspended)) - return; - -#ifdef CONFIG_GENERIC_TIME - offset = (clocksource_read(clock) - clock->cycle_last) & clock->mask; -#else - offset = clock->cycle_interval; -#endif - clock->xtime_nsec += (s64)xtime.tv_nsec << clock->shift; - - /* normally this loop will run just once, however in the - * case of lost or late ticks, it will accumulate correctly. - */ - while (offset >= clock->cycle_interval) { - /* accumulate one interval */ - clock->xtime_nsec += clock->xtime_interval; - clock->cycle_last += clock->cycle_interval; - offset -= clock->cycle_interval; - - if (clock->xtime_nsec >= (u64)NSEC_PER_SEC << clock->shift) { - clock->xtime_nsec -= (u64)NSEC_PER_SEC << clock->shift; - xtime.tv_sec++; - second_overflow(); - } - - /* interpolator bits */ - time_interpolator_update(clock->xtime_interval - >> clock->shift); - /* increment the NTP state machine */ - update_ntp_one_tick(); - - /* accumulate error between NTP and clock interval */ - clock->error += current_tick_length(); - clock->error -= clock->xtime_interval << (TICK_LENGTH_SHIFT - clock->shift); - } - - /* correct the clock when NTP error is too big */ - clocksource_adjust(clock, offset); - - /* store full nanoseconds into xtime */ - xtime.tv_nsec = (s64)clock->xtime_nsec >> clock->shift; - clock->xtime_nsec -= (s64)xtime.tv_nsec << clock->shift; - - /* check to see if there is a new clocksource to use */ - if (change_clocksource()) { - clock->error = 0; - clock->xtime_nsec = 0; - clocksource_calculate_interval(clock, tick_nsec); - } -} - -/* - * Called from the timer interrupt handler to charge one tick to the current - * process. user_tick is 1 if the tick is user time, 0 for system. - */ -void update_process_times(int user_tick) -{ - struct task_struct *p = current; - int cpu = smp_processor_id(); - - /* Note: this timer irq context must be accounted for as well. */ - if (user_tick) - account_user_time(p, jiffies_to_cputime(1)); - else - account_system_time(p, HARDIRQ_OFFSET, jiffies_to_cputime(1)); - run_local_timers(); - if (rcu_pending(cpu)) - rcu_check_callbacks(cpu, user_tick); - scheduler_tick(); - run_posix_cpu_timers(p); -} - -/* - * Nr of active tasks - counted in fixed-point numbers - */ -static unsigned long count_active_tasks(void) -{ - return nr_active() * FIXED_1; -} - -/* - * Hmm.. Changed this, as the GNU make sources (load.c) seems to - * imply that avenrun[] is the standard name for this kind of thing. - * Nothing else seems to be standardized: the fractional size etc - * all seem to differ on different machines. - * - * Requires xtime_lock to access. - */ -unsigned long avenrun[3]; - -EXPORT_SYMBOL(avenrun); - -/* - * calc_load - given tick count, update the avenrun load estimates. - * This is called while holding a write_lock on xtime_lock. - */ -static inline void calc_load(unsigned long ticks) -{ - unsigned long active_tasks; /* fixed-point */ - static int count = LOAD_FREQ; - - count -= ticks; - if (count < 0) { - count += LOAD_FREQ; - active_tasks = count_active_tasks(); - CALC_LOAD(avenrun[0], EXP_1, active_tasks); - CALC_LOAD(avenrun[1], EXP_5, active_tasks); - CALC_LOAD(avenrun[2], EXP_15, active_tasks); - } -} - -/* jiffies at the most recent update of wall time */ -unsigned long wall_jiffies = INITIAL_JIFFIES; - -/* - * This read-write spinlock protects us from races in SMP while - * playing with xtime and avenrun. - */ -#ifndef ARCH_HAVE_XTIME_LOCK -__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock); - -EXPORT_SYMBOL(xtime_lock); -#endif - -/* - * This function runs timers and the timer-tq in bottom half context. - */ -static void run_timer_softirq(struct softirq_action *h) -{ - tvec_base_t *base = __get_cpu_var(tvec_bases); - - hrtimer_run_queues(); - if (time_after_eq(jiffies, base->timer_jiffies)) - __run_timers(base); -} - -/* - * Called by the local, per-CPU timer interrupt on SMP. - */ -void run_local_timers(void) -{ - raise_softirq(TIMER_SOFTIRQ); - softlockup_tick(); -} - -/* - * Called by the timer interrupt. xtime_lock must already be taken - * by the timer IRQ! - */ -static inline void update_times(void) -{ - unsigned long ticks; - - ticks = jiffies - wall_jiffies; - wall_jiffies += ticks; - update_wall_time(); - calc_load(ticks); -} - -/* - * The 64-bit jiffies value is not atomic - you MUST NOT read it - * without sampling the sequence number in xtime_lock. - * jiffies is defined in the linker script... - */ - -void do_timer(struct pt_regs *regs) -{ - jiffies_64++; - /* prevent loading jiffies before storing new jiffies_64 value. */ - barrier(); - update_times(); -} - -#ifdef __ARCH_WANT_SYS_ALARM - -/* - * For backwards compatibility? This can be done in libc so Alpha - * and all newer ports shouldn't need it. - */ -asmlinkage unsigned long sys_alarm(unsigned int seconds) -{ - return alarm_setitimer(seconds); -} - -#endif - -#ifndef __alpha__ - -/* - * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this - * should be moved into arch/i386 instead? - */ - -/** - * sys_getpid - return the thread group id of the current process - * - * Note, despite the name, this returns the tgid not the pid. The tgid and - * the pid are identical unless CLONE_THREAD was specified on clone() in - * which case the tgid is the same in all threads of the same group. - * - * This is SMP safe as current->tgid does not change. - */ -asmlinkage long sys_getpid(void) -{ - return current->tgid; -} - -/* - * Accessing ->real_parent is not SMP-safe, it could - * change from under us. However, we can use a stale - * value of ->real_parent under rcu_read_lock(), see - * release_task()->call_rcu(delayed_put_task_struct). - */ -asmlinkage long sys_getppid(void) -{ - int pid; - - rcu_read_lock(); - pid = rcu_dereference(current->real_parent)->tgid; - rcu_read_unlock(); - - return pid; -} - -asmlinkage long sys_getuid(void) -{ - /* Only we change this so SMP safe */ - return current->uid; -} - -asmlinkage long sys_geteuid(void) -{ - /* Only we change this so SMP safe */ - return current->euid; -} - -asmlinkage long sys_getgid(void) -{ - /* Only we change this so SMP safe */ - return current->gid; -} - -asmlinkage long sys_getegid(void) -{ - /* Only we change this so SMP safe */ - return current->egid; -} - -#endif - -static void process_timeout(unsigned long __data) -{ - wake_up_process((struct task_struct *)__data); -} - -/** - * schedule_timeout - sleep until timeout - * @timeout: timeout value in jiffies - * - * Make the current task sleep until @timeout jiffies have - * elapsed. The routine will return immediately unless - * the current task state has been set (see set_current_state()). - * - * You can set the task state as follows - - * - * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to - * pass before the routine returns. The routine will return 0 - * - * %TASK_INTERRUPTIBLE - the routine may return early if a signal is - * delivered to the current task. In this case the remaining time - * in jiffies will be returned, or 0 if the timer expired in time - * - * The current task state is guaranteed to be TASK_RUNNING when this - * routine returns. - * - * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule - * the CPU away without a bound on the timeout. In this case the return - * value will be %MAX_SCHEDULE_TIMEOUT. - * - * In all cases the return value is guaranteed to be non-negative. - */ -fastcall signed long __sched schedule_timeout(signed long timeout) -{ - struct timer_list timer; - unsigned long expire; - - switch (timeout) - { - case MAX_SCHEDULE_TIMEOUT: - /* - * These two special cases are useful to be comfortable - * in the caller. Nothing more. We could take - * MAX_SCHEDULE_TIMEOUT from one of the negative value - * but I' d like to return a valid offset (>=0) to allow - * the caller to do everything it want with the retval. - */ - schedule(); - goto out; - default: - /* - * Another bit of PARANOID. Note that the retval will be - * 0 since no piece of kernel is supposed to do a check - * for a negative retval of schedule_timeout() (since it - * should never happens anyway). You just have the printk() - * that will tell you if something is gone wrong and where. - */ - if (timeout < 0) - { - printk(KERN_ERR "schedule_timeout: wrong timeout " - "value %lx from %p\n", timeout, - __builtin_return_address(0)); - current->state = TASK_RUNNING; - goto out; - } - } - - expire = timeout + jiffies; - - setup_timer(&timer, process_timeout, (unsigned long)current); - __mod_timer(&timer, expire); - schedule(); - del_singleshot_timer_sync(&timer); - - timeout = expire - jiffies; - - out: - return timeout < 0 ? 0 : timeout; -} -EXPORT_SYMBOL(schedule_timeout); - -/* - * We can use __set_current_state() here because schedule_timeout() calls - * schedule() unconditionally. - */ -signed long __sched schedule_timeout_interruptible(signed long timeout) -{ - __set_current_state(TASK_INTERRUPTIBLE); - return schedule_timeout(timeout); -} -EXPORT_SYMBOL(schedule_timeout_interruptible); - -signed long __sched schedule_timeout_uninterruptible(signed long timeout) -{ - __set_current_state(TASK_UNINTERRUPTIBLE); - return schedule_timeout(timeout); -} -EXPORT_SYMBOL(schedule_timeout_uninterruptible); - -/* Thread ID - the internal kernel "pid" */ -asmlinkage long sys_gettid(void) -{ - return current->pid; -} - -/* - * sys_sysinfo - fill in sysinfo struct - */ -asmlinkage long sys_sysinfo(struct sysinfo __user *info) -{ - struct sysinfo val; - unsigned long mem_total, sav_total; - unsigned int mem_unit, bitcount; - unsigned long seq; - - memset((char *)&val, 0, sizeof(struct sysinfo)); - - do { - struct timespec tp; - seq = read_seqbegin(&xtime_lock); - - /* - * This is annoying. The below is the same thing - * posix_get_clock_monotonic() does, but it wants to - * take the lock which we want to cover the loads stuff - * too. - */ - - getnstimeofday(&tp); - tp.tv_sec += wall_to_monotonic.tv_sec; - tp.tv_nsec += wall_to_monotonic.tv_nsec; - if (tp.tv_nsec - NSEC_PER_SEC >= 0) { - tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC; - tp.tv_sec++; - } - val.uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0); - - val.loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT); - val.loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT); - val.loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT); - - val.procs = nr_threads; - } while (read_seqretry(&xtime_lock, seq)); - - si_meminfo(&val); - si_swapinfo(&val); - - /* - * If the sum of all the available memory (i.e. ram + swap) - * is less than can be stored in a 32 bit unsigned long then - * we can be binary compatible with 2.2.x kernels. If not, - * well, in that case 2.2.x was broken anyways... - * - * -Erik Andersen <andersee@xxxxxxxxxx> - */ - - mem_total = val.totalram + val.totalswap; - if (mem_total < val.totalram || mem_total < val.totalswap) - goto out; - bitcount = 0; - mem_unit = val.mem_unit; - while (mem_unit > 1) { - bitcount++; - mem_unit >>= 1; - sav_total = mem_total; - mem_total <<= 1; - if (mem_total < sav_total) - goto out; - } - - /* - * If mem_total did not overflow, multiply all memory values by - * val.mem_unit and set it to 1. This leaves things compatible - * with 2.2.x, and also retains compatibility with earlier 2.4.x - * kernels... - */ - - val.mem_unit = 1; - val.totalram <<= bitcount; - val.freeram <<= bitcount; - val.sharedram <<= bitcount; - val.bufferram <<= bitcount; - val.totalswap <<= bitcount; - val.freeswap <<= bitcount; - val.totalhigh <<= bitcount; - val.freehigh <<= bitcount; - - out: - if (copy_to_user(info, &val, sizeof(struct sysinfo))) - return -EFAULT; - - return 0; -} - -/* - * lockdep: we want to track each per-CPU base as a separate lock-class, - * but timer-bases are kmalloc()-ed, so we need to attach separate - * keys to them: - */ -static struct lock_class_key base_lock_keys[NR_CPUS]; - -static int __devinit init_timers_cpu(int cpu) -{ - int j; - tvec_base_t *base; - static char __devinitdata tvec_base_done[NR_CPUS]; - - if (!tvec_base_done[cpu]) { - static char boot_done; - - if (boot_done) { - /* - * The APs use this path later in boot - */ - base = kmalloc_node(sizeof(*base), GFP_KERNEL, - cpu_to_node(cpu)); - if (!base) - return -ENOMEM; - memset(base, 0, sizeof(*base)); - per_cpu(tvec_bases, cpu) = base; - } else { - /* - * This is for the boot CPU - we use compile-time - * static initialisation because per-cpu memory isn't - * ready yet and because the memory allocators are not - * initialised either. - */ - boot_done = 1; - base = &boot_tvec_bases; - } - tvec_base_done[cpu] = 1; - } else { - base = per_cpu(tvec_bases, cpu); - } - - spin_lock_init(&base->lock); - lockdep_set_class(&base->lock, base_lock_keys + cpu); - - for (j = 0; j < TVN_SIZE; j++) { - INIT_LIST_HEAD(base->tv5.vec + j); - INIT_LIST_HEAD(base->tv4.vec + j); - INIT_LIST_HEAD(base->tv3.vec + j); - INIT_LIST_HEAD(base->tv2.vec + j); - } - for (j = 0; j < TVR_SIZE; j++) - INIT_LIST_HEAD(base->tv1.vec + j); - - base->timer_jiffies = jiffies; - return 0; -} - -#ifdef CONFIG_HOTPLUG_CPU -static void migrate_timer_list(tvec_base_t *new_base, struct list_head *head) -{ - struct timer_list *timer; - - while (!list_empty(head)) { - timer = list_entry(head->next, struct timer_list, entry); - detach_timer(timer, 0); - timer->base = new_base; - internal_add_timer(new_base, timer); - } -} - -static void __devinit migrate_timers(int cpu) -{ - tvec_base_t *old_base; - tvec_base_t *new_base; - int i; - - BUG_ON(cpu_online(cpu)); - old_base = per_cpu(tvec_bases, cpu); - new_base = get_cpu_var(tvec_bases); - - local_irq_disable(); - spin_lock(&new_base->lock); - spin_lock(&old_base->lock); - - BUG_ON(old_base->running_timer); - - for (i = 0; i < TVR_SIZE; i++) - migrate_timer_list(new_base, old_base->tv1.vec + i); - for (i = 0; i < TVN_SIZE; i++) { - migrate_timer_list(new_base, old_base->tv2.vec + i); - migrate_timer_list(new_base, old_base->tv3.vec + i); - migrate_timer_list(new_base, old_base->tv4.vec + i); - migrate_timer_list(new_base, old_base->tv5.vec + i); - } - - spin_unlock(&old_base->lock); - spin_unlock(&new_base->lock); - local_irq_enable(); - put_cpu_var(tvec_bases); -} -#endif /* CONFIG_HOTPLUG_CPU */ - -static int __cpuinit timer_cpu_notify(struct notifier_block *self, - unsigned long action, void *hcpu) -{ - long cpu = (long)hcpu; - switch(action) { - case CPU_UP_PREPARE: - if (init_timers_cpu(cpu) < 0) - return NOTIFY_BAD; - break; -#ifdef CONFIG_HOTPLUG_CPU - case CPU_DEAD: - migrate_timers(cpu); - break; -#endif - default: - break; - } - return NOTIFY_OK; -} - -static struct notifier_block __cpuinitdata timers_nb = { - .notifier_call = timer_cpu_notify, -}; - - -void __init init_timers(void) -{ - timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE, - (void *)(long)smp_processor_id()); - register_cpu_notifier(&timers_nb); - open_softirq(TIMER_SOFTIRQ, run_timer_softirq, NULL); -} - -#ifdef CONFIG_TIME_INTERPOLATION - -struct time_interpolator *time_interpolator __read_mostly; -static struct time_interpolator *time_interpolator_list __read_mostly; -static DEFINE_SPINLOCK(time_interpolator_lock); - -static inline u64 time_interpolator_get_cycles(unsigned int src) -{ - unsigned long (*x)(void); - - switch (src) - { - case TIME_SOURCE_FUNCTION: - x = time_interpolator->addr; - return x(); - - case TIME_SOURCE_MMIO64 : - return readq_relaxed((void __iomem *)time_interpolator->addr); - - case TIME_SOURCE_MMIO32 : - return readl_relaxed((void __iomem *)time_interpolator->addr); - - default: return get_cycles(); - } -} - -static inline u64 time_interpolator_get_counter(int writelock) -{ - unsigned int src = time_interpolator->source; - - if (time_interpolator->jitter) - { - u64 lcycle; - u64 now; - - do { - lcycle = time_interpolator->last_cycle; - now = time_interpolator_get_cycles(src); - if (lcycle && time_after(lcycle, now)) - return lcycle; - - /* When holding the xtime write lock, there's no need - * to add the overhead of the cmpxchg. Readers are - * force to retry until the write lock is released. - */ - if (writelock) { - time_interpolator->last_cycle = now; - return now; - } - /* Keep track of the last timer value returned. The use of cmpxchg here - * will cause contention in an SMP environment. - */ - } while (unlikely(cmpxchg(&time_interpolator->last_cycle, lcycle, now) != lcycle)); - return now; - } - else - return time_interpolator_get_cycles(src); -} - -void time_interpolator_reset(void) -{ - time_interpolator->offset = 0; - time_interpolator->last_counter = time_interpolator_get_counter(1); -} - -#define GET_TI_NSECS(count,i) (((((count) - i->last_counter) & (i)->mask) * (i)->nsec_per_cyc) >> (i)->shift) - -unsigned long time_interpolator_get_offset(void) -{ - /* If we do not have a time interpolator set up then just return zero */ - if (!time_interpolator) - return 0; - - return time_interpolator->offset + - GET_TI_NSECS(time_interpolator_get_counter(0), time_interpolator); -} - -#define INTERPOLATOR_ADJUST 65536 -#define INTERPOLATOR_MAX_SKIP 10*INTERPOLATOR_ADJUST - -static void time_interpolator_update(long delta_nsec) -{ - u64 counter; - unsigned long offset; - - /* If there is no time interpolator set up then do nothing */ - if (!time_interpolator) - return; - - /* - * The interpolator compensates for late ticks by accumulating the late - * time in time_interpolator->offset. A tick earlier than expected will - * lead to a reset of the offset and a corresponding jump of the clock - * forward. Again this only works if the interpolator clock is running - * slightly slower than the regular clock and the tuning logic insures - * that. - */ - - counter = time_interpolator_get_counter(1); - offset = time_interpolator->offset + - GET_TI_NSECS(counter, time_interpolator); - - if (delta_nsec < 0 || (unsigned long) delta_nsec < offset) - time_interpolator->offset = offset - delta_nsec; - else { - time_interpolator->skips++; - time_interpolator->ns_skipped += delta_nsec - offset; - time_interpolator->offset = 0; - } - time_interpolator->last_counter = counter; - - /* Tuning logic for time interpolator invoked every minute or so. - * Decrease interpolator clock speed if no skips occurred and an offset is carried. - * Increase interpolator clock speed if we skip too much time. - */ - if (jiffies % INTERPOLATOR_ADJUST == 0) - { - if (time_interpolator->skips == 0 && time_interpolator->offset > tick_nsec) - time_interpolator->nsec_per_cyc--; - if (time_interpolator->ns_skipped > INTERPOLATOR_MAX_SKIP && time_interpolator->offset == 0) - time_interpolator->nsec_per_cyc++; - time_interpolator->skips = 0; - time_interpolator->ns_skipped = 0; - } -} - -static inline int -is_better_time_interpolator(struct time_interpolator *new) -{ - if (!time_interpolator) - return 1; - return new->frequency > 2*time_interpolator->frequency || - (unsigned long)new->drift < (unsigned long)time_interpolator->drift; -} - -void -register_time_interpolator(struct time_interpolator *ti) -{ - unsigned long flags; - - /* Sanity check */ - BUG_ON(ti->frequency == 0 || ti->mask == 0); - - ti->nsec_per_cyc = ((u64)NSEC_PER_SEC << ti->shift) / ti->frequency; - spin_lock(&time_interpolator_lock); - write_seqlock_irqsave(&xtime_lock, flags); - if (is_better_time_interpolator(ti)) { - time_interpolator = ti; - time_interpolator_reset(); - } - write_sequnlock_irqrestore(&xtime_lock, flags); - - ti->next = time_interpolator_list; - time_interpolator_list = ti; - spin_unlock(&time_interpolator_lock); -} - -void -unregister_time_interpolator(struct time_interpolator *ti) -{ - struct time_interpolator *curr, **prev; - unsigned long flags; - - spin_lock(&time_interpolator_lock); - prev = &time_interpolator_list; - for (curr = *prev; curr; curr = curr->next) { - if (curr == ti) { - *prev = curr->next; - break; - } - prev = &curr->next; - } - - write_seqlock_irqsave(&xtime_lock, flags); - if (ti == time_interpolator) { - /* we lost the best time-interpolator: */ - time_interpolator = NULL; - /* find the next-best interpolator */ - for (curr = time_interpolator_list; curr; curr = curr->next) - if (is_better_time_interpolator(curr)) - time_interpolator = curr; - time_interpolator_reset(); - } - write_sequnlock_irqrestore(&xtime_lock, flags); - spin_unlock(&time_interpolator_lock); -} -#endif /* CONFIG_TIME_INTERPOLATION */ - -/** - * msleep - sleep safely even with waitqueue interruptions - * @msecs: Time in milliseconds to sleep for - */ -void msleep(unsigned int msecs) -{ - unsigned long timeout = msecs_to_jiffies(msecs) + 1; - - while (timeout) - timeout = schedule_timeout_uninterruptible(timeout); -} - -EXPORT_SYMBOL(msleep); - -/** - * msleep_interruptible - sleep waiting for signals - * @msecs: Time in milliseconds to sleep for - */ -unsigned long msleep_interruptible(unsigned int msecs) -{ - unsigned long timeout = msecs_to_jiffies(msecs) + 1; - - while (timeout && !signal_pending(current)) - timeout = schedule_timeout_interruptible(timeout); - return jiffies_to_msecs(timeout); -} - -EXPORT_SYMBOL(msleep_interruptible); _______________________________________________ Xen-changelog mailing list Xen-changelog@xxxxxxxxxxxxxxxxxxx http://lists.xensource.com/xen-changelog
|
Lists.xenproject.org is hosted with RackSpace, monitoring our |