[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] [Xen-changelog] [linux-2.6.18-xen] New generic RTC class PC-style 'CMOS' driver backported
# HG changeset patch # User Keir Fraser <keir.fraser@xxxxxxxxxx> # Date 1259083639 0 # Node ID a42e99460644129e527dc9b7e96b71e3093efa94 # Parent 402b0adc1c29fd6e96e7ef04d10271a77c0c4fb9 New generic RTC class PC-style 'CMOS' driver backported from Linux Kernel Ver. 2.6.29.2 Signed-off-by: Daniel Kiper <dkiper@xxxxxxxxxxxx> --- arch/i386/Kconfig | 2 arch/i386/kernel/time_hpet.c | 4 arch/x86_64/Kconfig | 2 arch/x86_64/kernel/time.c | 3 drivers/acpi/utilities/utglobal.c | 1 drivers/char/Kconfig | 10 drivers/rtc/Kconfig | 23 drivers/rtc/Makefile | 1 drivers/rtc/rtc-cmos.c | 1150 ++++++++++++++++++++++++++++++++++++++ include/linux/log2.h | 209 ++++++ include/linux/mc146818rtc.h | 17 11 files changed, 1417 insertions(+), 5 deletions(-) diff -r 402b0adc1c29 -r a42e99460644 arch/i386/Kconfig --- a/arch/i386/Kconfig Tue Nov 24 17:26:55 2009 +0000 +++ b/arch/i386/Kconfig Tue Nov 24 17:27:19 2009 +0000 @@ -237,7 +237,7 @@ config HPET_TIMER config HPET_EMULATE_RTC bool - depends on HPET_TIMER && RTC=y + depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y) default y config NR_CPUS diff -r 402b0adc1c29 -r a42e99460644 arch/i386/kernel/time_hpet.c --- a/arch/i386/kernel/time_hpet.c Tue Nov 24 17:26:55 2009 +0000 +++ b/arch/i386/kernel/time_hpet.c Tue Nov 24 17:27:19 2009 +0000 @@ -21,6 +21,8 @@ #include <asm/hpet.h> #include <linux/hpet.h> + +#include <asm-generic/rtc.h> static unsigned long hpet_period; /* fsecs / HPET clock */ unsigned long hpet_tick; /* hpet clks count per tick */ @@ -425,7 +427,7 @@ irqreturn_t hpet_rtc_interrupt(int irq, hpet_rtc_timer_reinit(); if (UIE_on | AIE_on) { - rtc_get_rtc_time(&curr_time); + get_rtc_time(&curr_time); } if (UIE_on) { if (curr_time.tm_sec != prev_update_sec) { diff -r 402b0adc1c29 -r a42e99460644 arch/x86_64/Kconfig --- a/arch/x86_64/Kconfig Tue Nov 24 17:26:55 2009 +0000 +++ b/arch/x86_64/Kconfig Tue Nov 24 17:27:19 2009 +0000 @@ -426,7 +426,7 @@ config HPET_TIMER config HPET_EMULATE_RTC bool "Provide RTC interrupt" - depends on HPET_TIMER && RTC=y + depends on HPET_TIMER && (RTC=y || RTC=m || RTC_DRV_CMOS=m || RTC_DRV_CMOS=y) # Mark as embedded because too many people got it wrong. # The code disables itself when not needed. diff -r 402b0adc1c29 -r a42e99460644 arch/x86_64/kernel/time.c --- a/arch/x86_64/kernel/time.c Tue Nov 24 17:26:55 2009 +0000 +++ b/arch/x86_64/kernel/time.c Tue Nov 24 17:27:19 2009 +0000 @@ -39,6 +39,7 @@ #include <asm/sections.h> #include <linux/cpufreq.h> #include <linux/hpet.h> +#include <asm-generic/rtc.h> #ifdef CONFIG_X86_LOCAL_APIC #include <asm/apic.h> #endif @@ -1272,7 +1273,7 @@ irqreturn_t hpet_rtc_interrupt(int irq, hpet_rtc_timer_reinit(); if (UIE_on | AIE_on) { - rtc_get_rtc_time(&curr_time); + get_rtc_time(&curr_time); } if (UIE_on) { if (curr_time.tm_sec != prev_update_sec) { diff -r 402b0adc1c29 -r a42e99460644 drivers/acpi/utilities/utglobal.c --- a/drivers/acpi/utilities/utglobal.c Tue Nov 24 17:26:55 2009 +0000 +++ b/drivers/acpi/utilities/utglobal.c Tue Nov 24 17:27:19 2009 +0000 @@ -840,5 +840,6 @@ void acpi_ut_init_globals(void) return_VOID; } +ACPI_EXPORT_SYMBOL(acpi_gbl_FADT) ACPI_EXPORT_SYMBOL(acpi_dbg_level) ACPI_EXPORT_SYMBOL(acpi_dbg_layer) diff -r 402b0adc1c29 -r a42e99460644 drivers/char/Kconfig --- a/drivers/char/Kconfig Tue Nov 24 17:26:55 2009 +0000 +++ b/drivers/char/Kconfig Tue Nov 24 17:27:19 2009 +0000 @@ -715,6 +715,12 @@ config NVRAM To compile this driver as a module, choose M here: the module will be called nvram. +# +# These legacy RTC drivers just cause too many conflicts with the generic +# RTC framework ... let's not even try to coexist any more. +# +if RTC_LIB=n + config RTC tristate "Enhanced Real Time Clock Support" depends on !PPC && !PARISC && !IA64 && !M68K && (!SPARC || PCI) && !FRV && !ARM @@ -808,6 +814,8 @@ config S3C2410_RTC RTC (Realtime Clock) driver for the clock inbuilt into the Samsung S3C2410. This can provide periodic interrupt rates from 1Hz to 64Hz for user programs, and wakeup from Alarm. + +endif # RTC_LIB config COBALT_LCD bool "Support for Cobalt LCD" @@ -1012,7 +1020,7 @@ config HPET non-periodioc and/or periodic. config HPET_RTC_IRQ - bool "HPET Control RTC IRQ" if !HPET_EMULATE_RTC + bool "HPET Control RTC IRQ" if RTC_LIB=n && !HPET_EMULATE_RTC default n depends on HPET help diff -r 402b0adc1c29 -r a42e99460644 drivers/rtc/Kconfig --- a/drivers/rtc/Kconfig Tue Nov 24 17:26:55 2009 +0000 +++ b/drivers/rtc/Kconfig Tue Nov 24 17:27:19 2009 +0000 @@ -82,6 +82,29 @@ config RTC_INTF_DEV_UIE_EMUL comment "RTC drivers" depends on RTC_CLASS + +# this 'CMOS' RTC driver is arch dependent because <asm-generic/rtc.h> +# requires <asm/mc146818rtc.h> defining CMOS_READ/CMOS_WRITE, and a +# global rtc_lock ... it's not yet just another platform_device. + +config RTC_DRV_CMOS + tristate "PC-style 'CMOS'" + depends on RTC_CLASS && (X86 || ALPHA || ARM || M32R || ATARI || PPC || MIPS || SPARC64) + default y if X86 + help + Say "yes" here to get direct support for the real time clock + found in every PC or ACPI-based system, and some other boards. + Specifically the original MC146818, compatibles like those in + PC south bridges, the DS12887 or M48T86, some multifunction + or LPC bus chips, and so on. + + Your system will need to define the platform device used by + this driver, otherwise it won't be accessible. This means + you can safely enable this driver if you don't know whether + or not your board has this kind of hardware. + + This driver can also be built as a module. If so, the module + will be called rtc-cmos. config RTC_DRV_X1205 tristate "Xicor/Intersil X1205" diff -r 402b0adc1c29 -r a42e99460644 drivers/rtc/Makefile --- a/drivers/rtc/Makefile Tue Nov 24 17:26:55 2009 +0000 +++ b/drivers/rtc/Makefile Tue Nov 24 17:27:19 2009 +0000 @@ -14,6 +14,7 @@ obj-$(CONFIG_RTC_DRV_X1205) += rtc-x1205 obj-$(CONFIG_RTC_DRV_X1205) += rtc-x1205.o obj-$(CONFIG_RTC_DRV_ISL1208) += rtc-isl1208.o obj-$(CONFIG_RTC_DRV_TEST) += rtc-test.o +obj-$(CONFIG_RTC_DRV_CMOS) += rtc-cmos.o obj-$(CONFIG_RTC_DRV_DS1307) += rtc-ds1307.o obj-$(CONFIG_RTC_DRV_DS1672) += rtc-ds1672.o obj-$(CONFIG_RTC_DRV_DS1742) += rtc-ds1742.o diff -r 402b0adc1c29 -r a42e99460644 drivers/rtc/rtc-cmos.c --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/drivers/rtc/rtc-cmos.c Tue Nov 24 17:27:19 2009 +0000 @@ -0,0 +1,1150 @@ +/* + * RTC class driver for "CMOS RTC": PCs, ACPI, etc + * + * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c) + * Copyright (C) 2006 David Brownell (convert to new framework) + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +/* + * The original "cmos clock" chip was an MC146818 chip, now obsolete. + * That defined the register interface now provided by all PCs, some + * non-PC systems, and incorporated into ACPI. Modern PC chipsets + * integrate an MC146818 clone in their southbridge, and boards use + * that instead of discrete clones like the DS12887 or M48T86. There + * are also clones that connect using the LPC bus. + * + * That register API is also used directly by various other drivers + * (notably for integrated NVRAM), infrastructure (x86 has code to + * bypass the RTC framework, directly reading the RTC during boot + * and updating minutes/seconds for systems using NTP synch) and + * utilities (like userspace 'hwclock', if no /dev node exists). + * + * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with + * interrupts disabled, holding the global rtc_lock, to exclude those + * other drivers and utilities on correctly configured systems. + */ +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/spinlock.h> +#include <linux/platform_device.h> +#include <linux/mod_devicetable.h> +#include <linux/log2.h> + +/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */ +#include <asm-generic/rtc.h> + +typedef irqreturn_t (*irq_handler_t)(int, void *, struct pt_regs *); + +struct cmos_rtc { + struct rtc_device *rtc; + struct device *dev; + int irq; + struct resource *iomem; + + void (*wake_on)(struct device *); + void (*wake_off)(struct device *); + + u8 enabled_wake; + u8 suspend_ctrl; + + /* newer hardware extends the original register set */ + u8 day_alrm; + u8 mon_alrm; + u8 century; +}; + +/* both platform and pnp busses use negative numbers for invalid irqs */ +#define is_valid_irq(n) ((n) > 0) + +static const char driver_name[] = "rtc_cmos"; + +/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear; + * always mask it against the irq enable bits in RTC_CONTROL. Bit values + * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both. + */ +#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF) + +static inline int is_intr(u8 rtc_intr) +{ + if (!(rtc_intr & RTC_IRQF)) + return 0; + return rtc_intr & RTC_IRQMASK; +} + +/*----------------------------------------------------------------*/ + +/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because + * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly + * used in a broken "legacy replacement" mode. The breakage includes + * HPET #1 hijacking the IRQ for this RTC, and being unavailable for + * other (better) use. + * + * When that broken mode is in use, platform glue provides a partial + * emulation of hardware RTC IRQ facilities using HPET #1. We don't + * want to use HPET for anything except those IRQs though... + */ +#ifdef CONFIG_HPET_EMULATE_RTC +extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs); +#else + +#define is_hpet_enabled() 0 +#define hpet_rtc_timer_init() 0 + +static inline int hpet_mask_rtc_irq_bit(unsigned long mask) +{ + return 0; +} + +static inline int hpet_set_rtc_irq_bit(unsigned long mask) +{ + return 0; +} + +static inline int +hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) +{ + return 0; +} + +static inline int hpet_set_periodic_freq(unsigned long freq) +{ + return 0; +} + +static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) +{ + return 0; +} + +#endif + +/*----------------------------------------------------------------*/ + +#ifdef RTC_PORT + +/* Most newer x86 systems have two register banks, the first used + * for RTC and NVRAM and the second only for NVRAM. Caller must + * own rtc_lock ... and we won't worry about access during NMI. + */ +#define can_bank2 1 + +static inline unsigned char cmos_read_bank2(unsigned char addr) +{ + outb(addr, RTC_PORT(2)); + return inb(RTC_PORT(3)); +} + +static inline void cmos_write_bank2(unsigned char val, unsigned char addr) +{ + outb(addr, RTC_PORT(2)); + outb(val, RTC_PORT(2)); +} + +#else + +#define can_bank2 0 + +static inline unsigned char cmos_read_bank2(unsigned char addr) +{ + return 0; +} + +static inline void cmos_write_bank2(unsigned char val, unsigned char addr) +{ +} + +#endif + +/*----------------------------------------------------------------*/ + +static int cmos_read_time(struct device *dev, struct rtc_time *t) +{ + /* REVISIT: if the clock has a "century" register, use + * that instead of the heuristic in get_rtc_time(). + * That'll make Y3K compatility (year > 2070) easy! + */ + get_rtc_time(t); + return 0; +} + +static int cmos_set_time(struct device *dev, struct rtc_time *t) +{ + /* REVISIT: set the "century" register if available + * + * NOTE: this ignores the issue whereby updating the seconds + * takes effect exactly 500ms after we write the register. + * (Also queueing and other delays before we get this far.) + */ + return set_rtc_time(t); +} + +static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned char rtc_control; + + if (!is_valid_irq(cmos->irq)) + return -EIO; + + /* Basic alarms only support hour, minute, and seconds fields. + * Some also support day and month, for alarms up to a year in + * the future. + */ + t->time.tm_mday = -1; + t->time.tm_mon = -1; + + spin_lock_irq(&rtc_lock); + t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM); + t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM); + t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM); + + if (cmos->day_alrm) { + /* ignore upper bits on readback per ACPI spec */ + t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f; + if (!t->time.tm_mday) + t->time.tm_mday = -1; + + if (cmos->mon_alrm) { + t->time.tm_mon = CMOS_READ(cmos->mon_alrm); + if (!t->time.tm_mon) + t->time.tm_mon = -1; + } + } + + rtc_control = CMOS_READ(RTC_CONTROL); + spin_unlock_irq(&rtc_lock); + + /* REVISIT this assumes PC style usage: always BCD */ + + if (((unsigned)t->time.tm_sec) < 0x60) + t->time.tm_sec = BCD2BIN(t->time.tm_sec); + else + t->time.tm_sec = -1; + if (((unsigned)t->time.tm_min) < 0x60) + t->time.tm_min = BCD2BIN(t->time.tm_min); + else + t->time.tm_min = -1; + if (((unsigned)t->time.tm_hour) < 0x24) + t->time.tm_hour = BCD2BIN(t->time.tm_hour); + else + t->time.tm_hour = -1; + + if (cmos->day_alrm) { + if (((unsigned)t->time.tm_mday) <= 0x31) + t->time.tm_mday = BCD2BIN(t->time.tm_mday); + else + t->time.tm_mday = -1; + if (cmos->mon_alrm) { + if (((unsigned)t->time.tm_mon) <= 0x12) + t->time.tm_mon = BCD2BIN(t->time.tm_mon) - 1; + else + t->time.tm_mon = -1; + } + } + t->time.tm_year = -1; + + t->enabled = !!(rtc_control & RTC_AIE); + t->pending = 0; + + return 0; +} + +static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control) +{ + unsigned char rtc_intr; + + /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS; + * allegedly some older rtcs need that to handle irqs properly + */ + rtc_intr = CMOS_READ(RTC_INTR_FLAGS); + + if (is_hpet_enabled()) + return; + + rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; + if (is_intr(rtc_intr)) + rtc_update_irq(&cmos->rtc->class_dev, 1, rtc_intr); +} + +static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask) +{ + unsigned char rtc_control; + + /* flush any pending IRQ status, notably for update irqs, + * before we enable new IRQs + */ + rtc_control = CMOS_READ(RTC_CONTROL); + cmos_checkintr(cmos, rtc_control); + + rtc_control |= mask; + CMOS_WRITE(rtc_control, RTC_CONTROL); + hpet_set_rtc_irq_bit(mask); + + cmos_checkintr(cmos, rtc_control); +} + +static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask) +{ + unsigned char rtc_control; + + rtc_control = CMOS_READ(RTC_CONTROL); + rtc_control &= ~mask; + CMOS_WRITE(rtc_control, RTC_CONTROL); + hpet_mask_rtc_irq_bit(mask); + + cmos_checkintr(cmos, rtc_control); +} + +static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned char mon, mday, hrs, min, sec; + + if (!is_valid_irq(cmos->irq)) + return -EIO; + + /* REVISIT this assumes PC style usage: always BCD */ + + /* Writing 0xff means "don't care" or "match all". */ + + mon = t->time.tm_mon + 1; + mon = (mon <= 12) ? BIN2BCD(mon) : 0xff; + + mday = t->time.tm_mday; + mday = (mday >= 1 && mday <= 31) ? BIN2BCD(mday) : 0xff; + + hrs = t->time.tm_hour; + hrs = (hrs < 24) ? BIN2BCD(hrs) : 0xff; + + min = t->time.tm_min; + min = (min < 60) ? BIN2BCD(min) : 0xff; + + sec = t->time.tm_sec; + sec = (sec < 60) ? BIN2BCD(sec) : 0xff; + + spin_lock_irq(&rtc_lock); + + /* next rtc irq must not be from previous alarm setting */ + cmos_irq_disable(cmos, RTC_AIE); + + /* update alarm */ + CMOS_WRITE(hrs, RTC_HOURS_ALARM); + CMOS_WRITE(min, RTC_MINUTES_ALARM); + CMOS_WRITE(sec, RTC_SECONDS_ALARM); + + /* the system may support an "enhanced" alarm */ + if (cmos->day_alrm) { + CMOS_WRITE(mday, cmos->day_alrm); + if (cmos->mon_alrm) + CMOS_WRITE(mon, cmos->mon_alrm); + } + + /* FIXME the HPET alarm glue currently ignores day_alrm + * and mon_alrm ... + */ + hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec); + + if (t->enabled) + cmos_irq_enable(cmos, RTC_AIE); + + spin_unlock_irq(&rtc_lock); + + return 0; +} + +static int cmos_irq_set_freq(struct device *dev, int freq) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + int f; + unsigned long flags; + + if (!is_valid_irq(cmos->irq)) + return -ENXIO; + + if (!is_power_of_2(freq)) + return -EINVAL; + /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */ + f = ffs(freq); + if (f-- > 16) + return -EINVAL; + f = 16 - f; + + spin_lock_irqsave(&rtc_lock, flags); + hpet_set_periodic_freq(freq); + CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT); + spin_unlock_irqrestore(&rtc_lock, flags); + + return 0; +} + +static int cmos_irq_set_state(struct device *dev, int enabled) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned long flags; + + if (!is_valid_irq(cmos->irq)) + return -ENXIO; + + spin_lock_irqsave(&rtc_lock, flags); + + if (enabled) + cmos_irq_enable(cmos, RTC_PIE); + else + cmos_irq_disable(cmos, RTC_PIE); + + spin_unlock_irqrestore(&rtc_lock, flags); + return 0; +} + +#if defined(CONFIG_RTC_INTF_DEV) || defined(CONFIG_RTC_INTF_DEV_MODULE) + +static int +cmos_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned long flags; + + switch (cmd) { + case RTC_AIE_OFF: + case RTC_AIE_ON: + case RTC_UIE_OFF: + case RTC_UIE_ON: + if (!is_valid_irq(cmos->irq)) + return -EINVAL; + break; + /* PIE ON/OFF is handled by cmos_irq_set_state() */ + default: + return -ENOIOCTLCMD; + } + + spin_lock_irqsave(&rtc_lock, flags); + switch (cmd) { + case RTC_AIE_OFF: /* alarm off */ + cmos_irq_disable(cmos, RTC_AIE); + break; + case RTC_AIE_ON: /* alarm on */ + cmos_irq_enable(cmos, RTC_AIE); + break; + case RTC_UIE_OFF: /* update off */ + cmos_irq_disable(cmos, RTC_UIE); + break; + case RTC_UIE_ON: /* update on */ + cmos_irq_enable(cmos, RTC_UIE); + break; + } + spin_unlock_irqrestore(&rtc_lock, flags); + return 0; +} + +#else +#define cmos_rtc_ioctl NULL +#endif + +#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE) + +static int cmos_procfs(struct device *dev, struct seq_file *seq) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned char rtc_control, valid; + + spin_lock_irq(&rtc_lock); + rtc_control = CMOS_READ(RTC_CONTROL); + valid = CMOS_READ(RTC_VALID); + spin_unlock_irq(&rtc_lock); + + /* NOTE: at least ICH6 reports battery status using a different + * (non-RTC) bit; and SQWE is ignored on many current systems. + */ + return seq_printf(seq, + "periodic_IRQ\t: %s\n" + "update_IRQ\t: %s\n" + "HPET_emulated\t: %s\n" + // "square_wave\t: %s\n" + // "BCD\t\t: %s\n" + "DST_enable\t: %s\n" + "periodic_freq\t: %d\n" + "batt_status\t: %s\n", + (rtc_control & RTC_PIE) ? "yes" : "no", + (rtc_control & RTC_UIE) ? "yes" : "no", + is_hpet_enabled() ? "yes" : "no", + // (rtc_control & RTC_SQWE) ? "yes" : "no", + // (rtc_control & RTC_DM_BINARY) ? "no" : "yes", + (rtc_control & RTC_DST_EN) ? "yes" : "no", + cmos->rtc->irq_freq, + (valid & RTC_VRT) ? "okay" : "dead"); +} + +#else +#define cmos_procfs NULL +#endif + +static struct rtc_class_ops cmos_rtc_ops = { + .ioctl = cmos_rtc_ioctl, + .read_time = cmos_read_time, + .set_time = cmos_set_time, + .read_alarm = cmos_read_alarm, + .set_alarm = cmos_set_alarm, + .proc = cmos_procfs, + .irq_set_freq = cmos_irq_set_freq, + .irq_set_state = cmos_irq_set_state, +}; + +/*----------------------------------------------------------------*/ + +/* + * All these chips have at least 64 bytes of address space, shared by + * RTC registers and NVRAM. Most of those bytes of NVRAM are used + * by boot firmware. Modern chips have 128 or 256 bytes. + */ + +#define NVRAM_OFFSET (RTC_REG_D + 1) + +static struct bin_attribute nvram; + +static ssize_t +cmos_nvram_read(struct kobject *kobj, char *buf, loff_t off, size_t count) +{ + int retval; + + if (unlikely(off >= nvram.size)) + return 0; + if (unlikely(off < 0)) + return -EINVAL; + if ((off + count) > nvram.size) + count = nvram.size - off; + + off += NVRAM_OFFSET; + spin_lock_irq(&rtc_lock); + for (retval = 0; count; count--, off++, retval++) { + if (off < 128) + *buf++ = CMOS_READ(off); + else if (can_bank2) + *buf++ = cmos_read_bank2(off); + else + break; + } + spin_unlock_irq(&rtc_lock); + + return retval; +} + +static ssize_t +cmos_nvram_write(struct kobject *kobj, char *buf, loff_t off, size_t count) +{ + struct cmos_rtc *cmos; + int retval; + + cmos = dev_get_drvdata(container_of(kobj, struct device, kobj)); + if (unlikely(off >= nvram.size)) + return -EFBIG; + if (unlikely(off < 0)) + return -EINVAL; + if ((off + count) > nvram.size) + count = nvram.size - off; + + /* NOTE: on at least PCs and Ataris, the boot firmware uses a + * checksum on part of the NVRAM data. That's currently ignored + * here. If userspace is smart enough to know what fields of + * NVRAM to update, updating checksums is also part of its job. + */ + off += NVRAM_OFFSET; + spin_lock_irq(&rtc_lock); + for (retval = 0; count; count--, off++, retval++) { + /* don't trash RTC registers */ + if (off == cmos->day_alrm + || off == cmos->mon_alrm + || off == cmos->century) + buf++; + else if (off < 128) + CMOS_WRITE(*buf++, off); + else if (can_bank2) + cmos_write_bank2(*buf++, off); + else + break; + } + spin_unlock_irq(&rtc_lock); + + return retval; +} + +static struct bin_attribute nvram = { + .attr = { + .name = "nvram", + .mode = S_IRUGO | S_IWUSR, + }, + + .read = cmos_nvram_read, + .write = cmos_nvram_write, + /* size gets set up later */ +}; + +/*----------------------------------------------------------------*/ + +static struct cmos_rtc cmos_rtc; + +irqreturn_t rtc_interrupt(int irq, void *p, struct pt_regs *regs) +{ + u8 irqstat; + u8 rtc_control; + + spin_lock(&rtc_lock); + + /* When the HPET interrupt handler calls us, the interrupt + * status is passed as arg1 instead of the irq number. But + * always clear irq status, even when HPET is in the way. + * + * Note that HPET and RTC are almost certainly out of phase, + * giving different IRQ status ... + */ + irqstat = CMOS_READ(RTC_INTR_FLAGS); + rtc_control = CMOS_READ(RTC_CONTROL); + if (is_hpet_enabled()) + irqstat = (unsigned long)irq & 0xF0; + irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF; + + /* All Linux RTC alarms should be treated as if they were oneshot. + * Similar code may be needed in system wakeup paths, in case the + * alarm woke the system. + */ + if (irqstat & RTC_AIE) { + rtc_control &= ~RTC_AIE; + CMOS_WRITE(rtc_control, RTC_CONTROL); + hpet_mask_rtc_irq_bit(RTC_AIE); + + CMOS_READ(RTC_INTR_FLAGS); + } + spin_unlock(&rtc_lock); + + if (is_intr(irqstat)) { + rtc_update_irq(p, 1, irqstat); + return IRQ_HANDLED; + } else + return IRQ_NONE; +} + +#ifdef CONFIG_PNP +#define INITSECTION + +#else +#define INITSECTION __init +#endif + +static int INITSECTION +cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq) +{ + struct cmos_rtc_board_info *info = dev->platform_data; + int retval = 0; + unsigned char rtc_control; + unsigned address_space; + + /* there can be only one ... */ + if (cmos_rtc.dev) + return -EBUSY; + + if (!ports) + return -ENODEV; + + /* Claim I/O ports ASAP, minimizing conflict with legacy driver. + * + * REVISIT non-x86 systems may instead use memory space resources + * (needing ioremap etc), not i/o space resources like this ... + */ + ports = request_region(ports->start, + ports->end + 1 - ports->start, + driver_name); + if (!ports) { + dev_dbg(dev, "i/o registers already in use\n"); + return -EBUSY; + } + + cmos_rtc.irq = rtc_irq; + cmos_rtc.iomem = ports; + + /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM + * driver did, but don't reject unknown configs. Old hardware + * won't address 128 bytes. Newer chips have multiple banks, + * though they may not be listed in one I/O resource. + */ +#if defined(CONFIG_ATARI) + address_space = 64; +#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) || defined(__sparc__) + address_space = 128; +#else +#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes. + address_space = 128; +#endif + if (can_bank2 && ports->end > (ports->start + 1)) + address_space = 256; + + /* For ACPI systems extension info comes from the FADT. On others, + * board specific setup provides it as appropriate. Systems where + * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and + * some almost-clones) can provide hooks to make that behave. + * + * Note that ACPI doesn't preclude putting these registers into + * "extended" areas of the chip, including some that we won't yet + * expect CMOS_READ and friends to handle. + */ + if (info) { + if (info->rtc_day_alarm && info->rtc_day_alarm < 128) + cmos_rtc.day_alrm = info->rtc_day_alarm; + if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128) + cmos_rtc.mon_alrm = info->rtc_mon_alarm; + if (info->rtc_century && info->rtc_century < 128) + cmos_rtc.century = info->rtc_century; + + if (info->wake_on && info->wake_off) { + cmos_rtc.wake_on = info->wake_on; + cmos_rtc.wake_off = info->wake_off; + } + } + + cmos_rtc.rtc = rtc_device_register(driver_name, dev, + &cmos_rtc_ops, THIS_MODULE); + if (IS_ERR(cmos_rtc.rtc)) { + retval = PTR_ERR(cmos_rtc.rtc); + goto cleanup0; + } + + cmos_rtc.dev = dev; + dev_set_drvdata(dev, &cmos_rtc); + rename_region(ports, cmos_rtc.rtc->class_dev.class_id); + + spin_lock_irq(&rtc_lock); + + /* force periodic irq to CMOS reset default of 1024Hz; + * + * REVISIT it's been reported that at least one x86_64 ALI mobo + * doesn't use 32KHz here ... for portability we might need to + * do something about other clock frequencies. + */ + cmos_rtc.rtc->irq_freq = 1024; + hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq); + CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT); + + /* disable irqs */ + cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE); + + rtc_control = CMOS_READ(RTC_CONTROL); + + spin_unlock_irq(&rtc_lock); + + /* FIXME teach the alarm code how to handle binary mode; + * <asm-generic/rtc.h> doesn't know 12-hour mode either. + */ + if (is_valid_irq(rtc_irq) && + (!(rtc_control & RTC_24H) || (rtc_control & (RTC_DM_BINARY)))) { + dev_dbg(dev, "only 24-hr BCD mode supported\n"); + retval = -ENXIO; + goto cleanup1; + } + + if (is_valid_irq(rtc_irq)) { + irq_handler_t rtc_cmos_int_handler; + + if (is_hpet_enabled()) + rtc_cmos_int_handler = hpet_rtc_interrupt; + else + rtc_cmos_int_handler = rtc_interrupt; + + retval = request_irq(rtc_irq, rtc_cmos_int_handler, + IRQF_DISABLED, cmos_rtc.rtc->class_dev.class_id, + &cmos_rtc.rtc->class_dev); + if (retval < 0) { + dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq); + goto cleanup1; + } + } + hpet_rtc_timer_init(); + + /* export at least the first block of NVRAM */ + nvram.size = address_space - NVRAM_OFFSET; + retval = sysfs_create_bin_file(&dev->kobj, &nvram); + if (retval < 0) { + dev_dbg(dev, "can't create nvram file? %d\n", retval); + goto cleanup2; + } + + pr_info("%s: alarms up to one %s%s, %zd bytes nvram%s\n", + cmos_rtc.rtc->class_dev.class_id, + is_valid_irq(rtc_irq) + ? (cmos_rtc.mon_alrm + ? "year" + : (cmos_rtc.day_alrm + ? "month" : "day")) + : "no", + cmos_rtc.century ? ", y3k" : "", + nvram.size, + is_hpet_enabled() ? ", hpet irqs" : ""); + + return 0; + +cleanup2: + if (is_valid_irq(rtc_irq)) + free_irq(rtc_irq, &cmos_rtc.rtc->class_dev); +cleanup1: + cmos_rtc.dev = NULL; + rtc_device_unregister(cmos_rtc.rtc); +cleanup0: + release_region(ports->start, ports->end + 1 - ports->start); + return retval; +} + +static void cmos_do_shutdown(void) +{ + spin_lock_irq(&rtc_lock); + cmos_irq_disable(&cmos_rtc, RTC_IRQMASK); + spin_unlock_irq(&rtc_lock); +} + +static void __exit cmos_do_remove(struct device *dev) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + struct resource *ports; + + cmos_do_shutdown(); + + sysfs_remove_bin_file(&dev->kobj, &nvram); + + if (is_valid_irq(cmos->irq)) { + free_irq(cmos->irq, &cmos->rtc->class_dev); + } + + rtc_device_unregister(cmos->rtc); + cmos->rtc = NULL; + + ports = cmos->iomem; + release_region(ports->start, ports->end + 1 - ports->start); + cmos->iomem = NULL; + + cmos->dev = NULL; + dev_set_drvdata(dev, NULL); +} + +#ifdef CONFIG_PM + +static int cmos_suspend(struct device *dev, pm_message_t mesg) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned char tmp; + + /* only the alarm might be a wakeup event source */ + spin_lock_irq(&rtc_lock); + cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL); + if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) { + unsigned char mask; + + if (device_may_wakeup(dev)) + mask = RTC_IRQMASK & ~RTC_AIE; + else + mask = RTC_IRQMASK; + tmp &= ~mask; + CMOS_WRITE(tmp, RTC_CONTROL); + hpet_mask_rtc_irq_bit(mask); + + cmos_checkintr(cmos, tmp); + } + spin_unlock_irq(&rtc_lock); + + if (tmp & RTC_AIE) { + cmos->enabled_wake = 1; + if (cmos->wake_on) + cmos->wake_on(dev); + else + enable_irq_wake(cmos->irq); + } + + pr_debug("%s: suspend%s, ctrl %02x\n", + cmos_rtc.rtc->class_dev.class_id, + (tmp & RTC_AIE) ? ", alarm may wake" : "", + tmp); + + return 0; +} + +static int cmos_resume(struct device *dev) +{ + struct cmos_rtc *cmos = dev_get_drvdata(dev); + unsigned char tmp = cmos->suspend_ctrl; + + /* re-enable any irqs previously active */ + if (tmp & RTC_IRQMASK) { + unsigned char mask; + + if (cmos->enabled_wake) { + if (cmos->wake_off) + cmos->wake_off(dev); + else + disable_irq_wake(cmos->irq); + cmos->enabled_wake = 0; + } + + spin_lock_irq(&rtc_lock); + do { + CMOS_WRITE(tmp, RTC_CONTROL); + hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK); + + mask = CMOS_READ(RTC_INTR_FLAGS); + mask &= (tmp & RTC_IRQMASK) | RTC_IRQF; + if (!is_hpet_enabled() || !is_intr(mask)) + break; + + /* force one-shot behavior if HPET blocked + * the wake alarm's irq + */ + rtc_update_irq(&cmos->rtc->class_dev, 1, mask); + tmp &= ~RTC_AIE; + hpet_mask_rtc_irq_bit(RTC_AIE); + } while (mask & RTC_AIE); + spin_unlock_irq(&rtc_lock); + } + + pr_debug("%s: resume, ctrl %02x\n", + cmos_rtc.rtc->class_dev.class_id, + tmp); + + return 0; +} + +#else +#define cmos_suspend NULL +#define cmos_resume NULL +#endif + +/*----------------------------------------------------------------*/ + +/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus. + * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs + * probably list them in similar PNPBIOS tables; so PNP is more common. + * + * We don't use legacy "poke at the hardware" probing. Ancient PCs that + * predate even PNPBIOS should set up platform_bus devices. + */ + +#ifdef CONFIG_ACPI + +#include <linux/acpi.h> + +#ifdef CONFIG_PM +static u32 rtc_handler(void *context) +{ + acpi_clear_event(ACPI_EVENT_RTC); + acpi_disable_event(ACPI_EVENT_RTC, 0); + return ACPI_INTERRUPT_HANDLED; +} + +static inline void rtc_wake_setup(void) +{ + acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL); + /* + * After the RTC handler is installed, the Fixed_RTC event should + * be disabled. Only when the RTC alarm is set will it be enabled. + */ + acpi_clear_event(ACPI_EVENT_RTC); + acpi_disable_event(ACPI_EVENT_RTC, 0); +} + +static void rtc_wake_on(struct device *dev) +{ + acpi_clear_event(ACPI_EVENT_RTC); + acpi_enable_event(ACPI_EVENT_RTC, 0); +} + +static void rtc_wake_off(struct device *dev) +{ + acpi_disable_event(ACPI_EVENT_RTC, 0); +} +#else +#define rtc_wake_setup() do{}while(0) +#define rtc_wake_on NULL +#define rtc_wake_off NULL +#endif + +/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find + * its device node and pass extra config data. This helps its driver use + * capabilities that the now-obsolete mc146818 didn't have, and informs it + * that this board's RTC is wakeup-capable (per ACPI spec). + */ +static struct cmos_rtc_board_info acpi_rtc_info; + +static void __devinit +cmos_wake_setup(struct device *dev) +{ + if (acpi_disabled) + return; + + rtc_wake_setup(); + acpi_rtc_info.wake_on = rtc_wake_on; + acpi_rtc_info.wake_off = rtc_wake_off; + + /* workaround bug in some ACPI tables */ + if (acpi_gbl_FADT->mon_alrm && !acpi_gbl_FADT->day_alrm) { + dev_dbg(dev, "bogus FADT month_alarm (%d)\n", + acpi_gbl_FADT->mon_alrm); + acpi_gbl_FADT->mon_alrm = 0; + } + + acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT->day_alrm; + acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT->mon_alrm; + acpi_rtc_info.rtc_century = acpi_gbl_FADT->century; + + /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */ + if (acpi_gbl_FADT->rtcs4) + dev_info(dev, "RTC can wake from S4\n"); + + dev->platform_data = &acpi_rtc_info; + + /* RTC always wakes from S1/S2/S3, and often S4/STD */ + device_init_wakeup(dev, 1); +} + +#else + +static void __devinit +cmos_wake_setup(struct device *dev) +{ +} + +#endif + +#ifdef CONFIG_PNP + +#include <linux/pnp.h> + +static int __devinit +cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id) +{ + cmos_wake_setup(&pnp->dev); + + if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0)) + /* Some machines contain a PNP entry for the RTC, but + * don't define the IRQ. It should always be safe to + * hardcode it in these cases + */ + return cmos_do_probe(&pnp->dev, &pnp->res.port_resource[0], 8); + else + return cmos_do_probe(&pnp->dev, + &pnp->res.port_resource[0], + pnp->res.irq_resource[0].start); +} + +static void __exit cmos_pnp_remove(struct pnp_dev *pnp) +{ + cmos_do_remove(&pnp->dev); +} + +#ifdef CONFIG_PM + +static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg) +{ + return cmos_suspend(&pnp->dev, mesg); +} + +static int cmos_pnp_resume(struct pnp_dev *pnp) +{ + return cmos_resume(&pnp->dev); +} + +#else +#define cmos_pnp_suspend NULL +#define cmos_pnp_resume NULL +#endif + +static void cmos_pnp_shutdown(struct device *pdev) +{ + cmos_do_shutdown(); +} + +static const struct pnp_device_id rtc_ids[] = { + { .id = "PNP0b00", }, + { .id = "PNP0b01", }, + { .id = "PNP0b02", }, + { }, +}; +MODULE_DEVICE_TABLE(pnp, rtc_ids); + +static struct pnp_driver cmos_pnp_driver = { + .name = (char *) driver_name, + .id_table = rtc_ids, + .probe = cmos_pnp_probe, + .remove = __exit_p(cmos_pnp_remove), + + /* flag ensures resume() gets called, and stops syslog spam */ + .flags = PNP_DRIVER_RES_DO_NOT_CHANGE, + .suspend = cmos_pnp_suspend, + .resume = cmos_pnp_resume, + .driver = { + .name = (char *)driver_name, + .shutdown = cmos_pnp_shutdown, + } +}; + +#endif /* CONFIG_PNP */ + +/*----------------------------------------------------------------*/ + +static int __exit cmos_platform_remove(struct platform_device *pdev) +{ + cmos_do_remove(&pdev->dev); + return 0; +} + +static void cmos_platform_shutdown(struct platform_device *pdev) +{ + cmos_do_shutdown(); +} + +/* work with hotplug and coldplug */ +MODULE_ALIAS("platform:rtc_cmos"); + +static struct platform_driver cmos_platform_driver = { + .remove = __exit_p(cmos_platform_remove), + .shutdown = cmos_platform_shutdown, + .driver = { + .name = (char *) driver_name, + .suspend = cmos_suspend, + .resume = cmos_resume, + } +}; + +static int __init cmos_init(void) +{ + int retval = 0; + +#ifdef CONFIG_PNP + pnp_register_driver(&cmos_pnp_driver); +#endif + + if (!cmos_rtc.dev) + retval = platform_driver_register(&cmos_platform_driver); + + if (retval == 0) + return 0; + +#ifdef CONFIG_PNP + pnp_unregister_driver(&cmos_pnp_driver); +#endif + return retval; +} +module_init(cmos_init); + +static void __exit cmos_exit(void) +{ +#ifdef CONFIG_PNP + pnp_unregister_driver(&cmos_pnp_driver); +#endif + platform_driver_unregister(&cmos_platform_driver); +} +module_exit(cmos_exit); + + +MODULE_AUTHOR("David Brownell"); +MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs"); +MODULE_LICENSE("GPL"); diff -r 402b0adc1c29 -r a42e99460644 include/linux/log2.h --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/include/linux/log2.h Tue Nov 24 17:27:19 2009 +0000 @@ -0,0 +1,209 @@ +/* Integer base 2 logarithm calculation + * + * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved. + * Written by David Howells (dhowells@xxxxxxxxxx) + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation; either version + * 2 of the License, or (at your option) any later version. + */ + +#ifndef _LINUX_LOG2_H +#define _LINUX_LOG2_H + +#include <linux/types.h> +#include <linux/bitops.h> + +/* + * deal with unrepresentable constant logarithms + */ +extern __attribute__((const, noreturn)) +int ____ilog2_NaN(void); + +/* + * non-constant log of base 2 calculators + * - the arch may override these in asm/bitops.h if they can be implemented + * more efficiently than using fls() and fls64() + * - the arch is not required to handle n==0 if implementing the fallback + */ +#ifndef CONFIG_ARCH_HAS_ILOG2_U32 +static inline __attribute__((const)) +int __ilog2_u32(u32 n) +{ + return fls(n) - 1; +} +#endif + +#ifndef CONFIG_ARCH_HAS_ILOG2_U64 +static inline __attribute__((const)) +int __ilog2_u64(u64 n) +{ + return fls64(n) - 1; +} +#endif + +/* + * Determine whether some value is a power of two, where zero is + * *not* considered a power of two. + */ + +static inline __attribute__((const)) +int is_power_of_2(unsigned long n) +{ + return (n != 0 && ((n & (n - 1)) == 0)); +} + +/* + * round up to nearest power of two + */ +static inline __attribute__((const)) +unsigned long __roundup_pow_of_two(unsigned long n) +{ + return 1UL << fls_long(n - 1); +} + +/* + * round down to nearest power of two + */ +static inline __attribute__((const)) +unsigned long __rounddown_pow_of_two(unsigned long n) +{ + return 1UL << (fls_long(n) - 1); +} + +/** + * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value + * @n - parameter + * + * constant-capable log of base 2 calculation + * - this can be used to initialise global variables from constant data, hence + * the massive ternary operator construction + * + * selects the appropriately-sized optimised version depending on sizeof(n) + */ +#define ilog2(n) \ +( \ + __builtin_constant_p(n) ? ( \ + (n) < 1 ? ____ilog2_NaN() : \ + (n) & (1ULL << 63) ? 63 : \ + (n) & (1ULL << 62) ? 62 : \ + (n) & (1ULL << 61) ? 61 : \ + (n) & (1ULL << 60) ? 60 : \ + (n) & (1ULL << 59) ? 59 : \ + (n) & (1ULL << 58) ? 58 : \ + (n) & (1ULL << 57) ? 57 : \ + (n) & (1ULL << 56) ? 56 : \ + (n) & (1ULL << 55) ? 55 : \ + (n) & (1ULL << 54) ? 54 : \ + (n) & (1ULL << 53) ? 53 : \ + (n) & (1ULL << 52) ? 52 : \ + (n) & (1ULL << 51) ? 51 : \ + (n) & (1ULL << 50) ? 50 : \ + (n) & (1ULL << 49) ? 49 : \ + (n) & (1ULL << 48) ? 48 : \ + (n) & (1ULL << 47) ? 47 : \ + (n) & (1ULL << 46) ? 46 : \ + (n) & (1ULL << 45) ? 45 : \ + (n) & (1ULL << 44) ? 44 : \ + (n) & (1ULL << 43) ? 43 : \ + (n) & (1ULL << 42) ? 42 : \ + (n) & (1ULL << 41) ? 41 : \ + (n) & (1ULL << 40) ? 40 : \ + (n) & (1ULL << 39) ? 39 : \ + (n) & (1ULL << 38) ? 38 : \ + (n) & (1ULL << 37) ? 37 : \ + (n) & (1ULL << 36) ? 36 : \ + (n) & (1ULL << 35) ? 35 : \ + (n) & (1ULL << 34) ? 34 : \ + (n) & (1ULL << 33) ? 33 : \ + (n) & (1ULL << 32) ? 32 : \ + (n) & (1ULL << 31) ? 31 : \ + (n) & (1ULL << 30) ? 30 : \ + (n) & (1ULL << 29) ? 29 : \ + (n) & (1ULL << 28) ? 28 : \ + (n) & (1ULL << 27) ? 27 : \ + (n) & (1ULL << 26) ? 26 : \ + (n) & (1ULL << 25) ? 25 : \ + (n) & (1ULL << 24) ? 24 : \ + (n) & (1ULL << 23) ? 23 : \ + (n) & (1ULL << 22) ? 22 : \ + (n) & (1ULL << 21) ? 21 : \ + (n) & (1ULL << 20) ? 20 : \ + (n) & (1ULL << 19) ? 19 : \ + (n) & (1ULL << 18) ? 18 : \ + (n) & (1ULL << 17) ? 17 : \ + (n) & (1ULL << 16) ? 16 : \ + (n) & (1ULL << 15) ? 15 : \ + (n) & (1ULL << 14) ? 14 : \ + (n) & (1ULL << 13) ? 13 : \ + (n) & (1ULL << 12) ? 12 : \ + (n) & (1ULL << 11) ? 11 : \ + (n) & (1ULL << 10) ? 10 : \ + (n) & (1ULL << 9) ? 9 : \ + (n) & (1ULL << 8) ? 8 : \ + (n) & (1ULL << 7) ? 7 : \ + (n) & (1ULL << 6) ? 6 : \ + (n) & (1ULL << 5) ? 5 : \ + (n) & (1ULL << 4) ? 4 : \ + (n) & (1ULL << 3) ? 3 : \ + (n) & (1ULL << 2) ? 2 : \ + (n) & (1ULL << 1) ? 1 : \ + (n) & (1ULL << 0) ? 0 : \ + ____ilog2_NaN() \ + ) : \ + (sizeof(n) <= 4) ? \ + __ilog2_u32(n) : \ + __ilog2_u64(n) \ + ) + +/** + * roundup_pow_of_two - round the given value up to nearest power of two + * @n - parameter + * + * round the given value up to the nearest power of two + * - the result is undefined when n == 0 + * - this can be used to initialise global variables from constant data + */ +#define roundup_pow_of_two(n) \ +( \ + __builtin_constant_p(n) ? ( \ + (n == 1) ? 1 : \ + (1UL << (ilog2((n) - 1) + 1)) \ + ) : \ + __roundup_pow_of_two(n) \ + ) + +/** + * rounddown_pow_of_two - round the given value down to nearest power of two + * @n - parameter + * + * round the given value down to the nearest power of two + * - the result is undefined when n == 0 + * - this can be used to initialise global variables from constant data + */ +#define rounddown_pow_of_two(n) \ +( \ + __builtin_constant_p(n) ? ( \ + (n == 1) ? 0 : \ + (1UL << ilog2(n))) : \ + __rounddown_pow_of_two(n) \ + ) + +/** + * order_base_2 - calculate the (rounded up) base 2 order of the argument + * @n: parameter + * + * The first few values calculated by this routine: + * ob2(0) = 0 + * ob2(1) = 0 + * ob2(2) = 1 + * ob2(3) = 2 + * ob2(4) = 2 + * ob2(5) = 3 + * ... and so on. + */ + +#define order_base_2(n) ilog2(roundup_pow_of_two(n)) + +#endif /* _LINUX_LOG2_H */ diff -r 402b0adc1c29 -r a42e99460644 include/linux/mc146818rtc.h --- a/include/linux/mc146818rtc.h Tue Nov 24 17:26:55 2009 +0000 +++ b/include/linux/mc146818rtc.h Tue Nov 24 17:27:19 2009 +0000 @@ -18,6 +18,23 @@ #ifdef __KERNEL__ #include <linux/spinlock.h> /* spinlock_t */ extern spinlock_t rtc_lock; /* serialize CMOS RAM access */ + +/* Some RTCs extend the mc146818 register set to support alarms of more + * than 24 hours in the future; or dates that include a century code. + * This platform_data structure can pass this information to the driver. + * + * Also, some platforms need suspend()/resume() hooks to kick in special + * handling of wake alarms, e.g. activating ACPI BIOS hooks or setting up + * a separate wakeup alarm used by some almost-clone chips. + */ +struct cmos_rtc_board_info { + void (*wake_on)(struct device *dev); + void (*wake_off)(struct device *dev); + + u8 rtc_day_alarm; /* zero, or register index */ + u8 rtc_mon_alarm; /* zero, or register index */ + u8 rtc_century; /* zero, or register index */ +}; #endif /********************************************************************** _______________________________________________ Xen-changelog mailing list Xen-changelog@xxxxxxxxxxxxxxxxxxx http://lists.xensource.com/xen-changelog
|
Lists.xenproject.org is hosted with RackSpace, monitoring our |