
Casey DeLorme's Comprehensive Guide to Xen Linux
Missing: VNC Console Configuration, Screenshots for ATI Driver Installation, Hand Drawn LVM Diagram
Examples

Table of Contents

I. Foreword:
1. What is this Guide?
2. Why a Single Guide?
3. Why VGA Passthrough?
4. Why EFI?
5. A Humble Request

II. Requirements:
1. My Hardware
2. Chosen OS & Required Software Packages
3. Materials/Resources
4. User Requirements
5. Known Hardware Issues

III. Installing Pure EFI Bootloaded Wheezy
1. Installing Wheezy without a bootloader
2. Manually booting Wheezy
3. Installing EFI & Basic Linux Configuration

IV. Compiling a Xen Custom Linux Kernel
1. Known Bugs

V. Compiling Xen
1. Downloading a Specific Revision
2. EFI Source Modifications
3. Compiling Process
4. Post-Install Tuning

VI. Configuring Xen for VGA Passthrough:
1. Identifying PCI Devices in Linux
2. VNC Console Configuration
3. Grub Configuration
4. HVM Configuration
5. ATI Driver Installation
6. Known Bugs

VII. Other Related Topics:
1. SSH

2. LVM Partitioning
3. Backup and Restore with dd

VIII. Refences:

Forward

What is this Guide?

This is an all-inclusive walkthrough from preparing materials for installation to successfully installing your
graphics card drivers in a virtual machine.

Besides being very long and detailed it was also specifically written for my hardware. Factors such as change in
hardware, chosen OS (Dom0), kernel version & flags, as well as configuration and software package versions
can all affect your success.

This guide may not work for nVidia graphics cards, currently they are lacking a lot of support. Patches exist, but
success is rare with modern Windows installations.

Why a Single Guide?

As mentioned, so many factors can create different results with Xen, and my experience with partial guides has
been just that. I wanted to create a single guide and would rather it remain as such.

Why VGA Passthrough?

The simple and obvious answer is Gaming, but there is a bit more detail behind it than that. Games are designed
for Windows, end of story. However, to play those games Windows needs a powerful video card to make it work.
With hardware virtualization we can now play HD video in a virtual machine, but we still don't have the power
needed to run modern video games.

My experience has been with VMWare Server 2 &. Workstation 8, for just over 3 years I used Windows Server
2008 R2 as a host operating system so I could still play games, and my VM's consisted of a development debian
web server and a PFSense router that handled my home networks traffic.

Honestly, Core i7 processors are absurdly powerful, and I was aiming for efficiency. Instead of forking out the cost
of creating two new smaller machines for PFSense and a web server, I combined it into one, and still barely
touched the processing power available. However, it's biggest flaw was Windows. The biggest target for viruses,
so I had to make sure I had a backup image available, but the most annoying thing was actually Windows
Updates. Consider a decision where you can take down your network for a few minutes once or twice a week, or
expose known security holes in your system?

My answer to the larger question, why VGA Passthrough, is to resolve my Windows dependency using modern
technology. With IOMMU I can now pass my graphics card to a virtual machine getting near-native performance
and keep the core of my system running on a "real" server platform.

Why EFI?

Consumer motherboards finally have it, and UEFI BIOS is amazing. EFI Bootloaded systems allow you to use
newer more modern partitioning schemes and a better boot architecture. MBR BIOS Bootloaders are over 20
years old, and while that's great for stability of older systems I want to move forward modern superior technology.

A Humble Request

This guides verbosity may bore experienced Linux users, but I want to ask that all users who try this guide add the
following:

Any additional steps or additions to steps you feel are unclear
Your hardware
Deviations from the guide
Whether you were successful
Bugs You Encountered

I want this guide to serve novice Linux users, and I also want more documentation for Xen to be available as it is
lacking it in many areas. Since Xen is open-source one of the best resources for new and improved
documentation is its users. As such I humbly request that you do as listed, and make your experiences known.

Requirements:

My Hardware
It's fine if you intend to use different hardware, just heed my warning you will probably encounter new situations,
which may or may not result on success.

Here is my basic list of equipment as relates to this guide:

Motherboard:ASRock Z68 Extreme4 Gen3
CPU: Intel Core i2600
RAM: 12GB 1333Mhz Corsair XMS (2x2G + 2x4G)
Boot Disk: 240GB OCZ Vertex 3
GPU: ATI Radeon HD 6870
LAN: Onboard Broadcom BCM57781 & PCIe EXPI9301CTBLK

Various USB & Input Devices:

Dom0 USB 3.0: Logitech K320 & Nano Receiver, Logitech M305 Wireless Laser Mouse & Unifying Receiver.

HVM USB 2.0: ASUS BT211 BlueTooth Dongle/Adapter, Apple BT Keyboard & Mouse, Logitech C910 HD
WebCam, Happauge HD PVR, Bamboo Touch Walcom Tablet. XBox 360 Wireless Dongle/Adapter.

Chosen OS & Required Software Packages
I used Debian Wheezy (testing). We are playing with things that are clearly in development, VGA Passthrough is
no perfect science, and at the time of writing Wheezy will be the new "stable" OS in just a few months. My
experiences with Wheezy have so far been fantastic.

On Debian Wheezy to compile both a custom Linux Kernel and Xen 4.2, I installed the following packages:

grub-efi-amd64
sudo
ssh
bridge-utils
parted
ntfsprogs
bzip2
build-essential
libncurses-dev
kernel-package
fakeroot
python-dev
uuid-dev

libglib2.0-dev
libyajl-dev
bcc
gcc-multilib
iasl
libpci-dev
mercurial

Total space required on the OS disk should be around 217 Megabytes.

I did not separate the packages between Kernel and Xen, since some are shared, and my guide is written for both
not one.

Results may vary if you use a different version of Debian, a later revision of Xen 4.2, or a different Dom0 operating
system. My best advice is to check the equivalent packages on your operating system and give it a spin.

Materials/Resources

Debian Wheezy (Testing) Install CD
UEFI Bootable Ubuntu Live CD (The latest Ubuntu Live CD's should be by default)
Onboard graphics or a second GPU for Dom0

My guide features a Pure EFI Installation, to make that happen the easiest solution I have found is to use an
Ubuntu Live CD to access grub for emergency manual boot procedures. Even if you aren't doing an EFI
bootloader, you may find this to be useful if not fascinating.

Without onboard or a secondary graphics card for Dom0, you won't have a way of interfacing with the control
system unless you have a second machine and can do everything from SSH. I would consider that risky, and
would advise you to have a graphics unit dedicated to Dom0.

User Requirements

While written for novice Linux users, my guide does require the following of its readers:

Familiar with CLI (Command Line Interface) and comfortable using Terminal
Are not afraid of data loss (have backed up our files elsewhere)
Have an Onboard or Secondary GPU for Dom0

Unless you want to use libvirt tools, all Xen commands and maintenance is handled via CLI.

If you don't have a dedicated graphics unit for Dom0 you won't be able to manage Xen and launch your Windows
HVM. You could use ssh, but I would not rely on that alone.

Recommendations to make the process easier:

Familiarity with "vi"
A second machine for SSH and VNC
Understand Drive Partitioning

While "vi" is pretty old-school, not knowing how to use it means you have to apply a workaround. Installing a GUI
and using a GUI text editor, or editing files over SFTP from another machine with a GUI text editor are examples,
but both require significantly more resources and time. Take my advice, learn vi, it will make you a better Linux
user. Most of the editing we do is fairly limited, you don't have to be an expert and know all the commands.

If you do not have a second machine to work from, you will need to install the Linux GUI so you can install
Windows over VNC.

I have included follow-up sections on both SSH and LVM Partitioning to help give a basic overview of each.

Finally, if you do not plan on using EFI, then be sure you skip all related steps and configuration changes.

Known Hardware Issues

The following issues are in relation to my hardware. If you are using different hardware feel free to skip this
section, but if you have hardware issues of your own please add to this section.

Marvell SATA Controller is not Intel IOMMU Compliant, and will throw many boot-delaying errors on Linux. My
experience is that the device simply does not function at all with my configuration, I turned it off from UEFI BIOS to
avoid error messages.

USB 3.0 ports are erratic and error prone. On Xen 4.1.2 I got it working, but only with my Wireless XBox 360
Dongle/Adapter. My Asus BT211 did not work at all, my Logitech C910 and Happauge were only able to record
Audio. When I tried Xen 4.2, I got constant instabilities and BSOD's in Windows HVM. My solution was to simply
not pass USB 3.0 devices.

The Logitech K320 Keyboard and Nano Receiver sometimes do not work at boot time. I haven't really figured out
the cause, but I recommend having SSH or a USB or PS/2 keyboard as a backup.

Installing Pure EFI Bootloaded Wheezy

Installing Wheezy without a bootloader

One of our EFI related goals is GPT partition tables. To acheive this we have to select Expert Install from the
Advanced menu:

The install process is surprisingly smart, for the most part you really just confirm each screen as it pops up. We
start at this screen:

We want to confirm each dialog until we reach this menu:

It will automatically detect the first connected ethernet port, and DHCP works but to make life easier I prefer to

enter a static IP.

Continue confirming each screen as it passes, if you want to set the host name keep an eye out for this screen:

Shadow Passwords and Allow Root Login are set by default:

You will have to enter a password twice for both root and the new user you create (if you choose to create one):

Continue confirming each screen until you reach disk partitioning, at this stage select manual:

Select each disk you intend to use, and specify the partition table as GPT, the default will be msdos:

My configuration is a big confusing as I have a lot of drives connected. I am using a 240GB SSD as my main
drive, a 500 GB Laptop hard drive to store backups, and 3x 1TB Western Digital Cavier Black drives for storage.

My SSD has three partitions, 260MB Fat32 for EFI, 260MB ext4 for /boot, and the remainder to LVM. My 500 GB
Laptop drive contains a single LVM partition, and the three 1TB Drives are setup as a RAID 5 2TB Storage area,
with a single LVM Partition.

For EFI you need a FAT32 partition, the smallest size is around 260 Megabytes, unless you plan on doing a lot
more with it you shouldn't need more than that. Be sure you mark this partition as bootable, and for Debian you
want to set its mount point manually to /boot/efi:

We also need a partition for your boot directory. This should be a linux format, ext3 or ext4, for SSD owners I

recommend ext4. The mount point should be /boot, and this is the partition that allows us to boot our OS off of the

LVM partitions.

For setting up the raid, we have to confirm configuration changes so far, and select create md:

We can select a RAID type, there are many kinds, if you aren't familiar check out the RAID on Wikipedia:

The configuration will ask us how many disks we are using in our configuration, and if there are any spare disks
(disks you have not in use but there as immediate backups):

Now we get to select which disks are part of the RAID from all available partitions:

Once that is done we partition our RAID, in this case I made a 2 TB LVM partition:

For the LVM configuration that follows please note that my final disk sizes changed, and the images do not reflect

this. Be sure to read as well as use the images as a guide.

Next we want to setup our LVM's, it will ask us again to confirm any disk changes. We only have one option, to

create a volume group, when selected you can specify a name, and select LVM partitions. For our purposes we

only want one partition per group, but as an alternative to using striped RAID you could just use LVM's. Once we

have our groups, we can select to create a logical volume and we will be asked which group, a name for the

volume, and the size:

We need three volumes for our initial setup. The first for the root partition, I set 6GB of space. Second I set 500 MB

of space for a swap partition. Finally I would recommend 18GB of space for a User partition, which can store our

compiled data and installation files for our virtual machines. Once you select done, you should see a similar

display of available partitions:

For our home partition we set ext4 and mount point to "/".

I also set the 500MB partition as swap space:

The 18GB Partition I set to mount at /home, and a filesystem of ext4. At the bottom you can confirm the
configuration and move forward:

As before we will just confirm each menu as we go through, eventually you'll get to this one:

Any of the mirrors are fine, if it fails you can try another or just try the same one a second time.

For a bare-bones installation you would usually de-select the graphical user interface from this screen:

If you do not have a second machine to work from, or want a GUI for Dom0, then feel free to select it.

Important! The installer automatically defaults to installing the grub bootloader, and if we are trying to install the efi
grub bootloader without making a mess of our disk we want to go down two to the "Continue without a
bootloader" option:

You will be given a very important message, this information is used for the manual boot process so be sure you
can remember it, or write it down:

Now we can finish the installation, when it pops the install disk out pop the Ubuntu Live CD in and proceed onto
the next step to Manually Boot Linux!

Manually booting Wheezy

Once the system begins rebooting the very first thing we want to do is load the boot option menu for our system

and specifically select the UEFI boot option for the Ubuntu Live CD:

This will give us a very different looking black and white menu, from here we can press "c" on the keyboard to
access the grub emergency system:

I am going to jump ahead and show you want the commands you need to enter look like, then explain them:

set root=(hd0,gpt2)
linux /vmlinux ro root=/dev/mapper/???
initrd /initrd
boot

Manually booting seems confusing at first, but it is actually quite simple. The grub menu is a mini terminal with
specific commands, ls for example will list your hard drives and partitions.

Setting the "root" variable tells grub which partition to look for files in. The files it needs are the kernel and friends,
which means you want to point it to the partition you made "/boot". If you were following my guide that should be
the middle partition, or gpt2.

The second command specifies the kernel we are using, and passes the base directory to the kernel, in this case
our LVM partition. Grub cannot read the LVM partitions which is why we separated the "/boot" directory.

You will notice that the grub system has auto-complete, hitting tab will fill in the blanks if you don't know the full
kernel name. The parameters we pass are "ro" and "root=", and if you recall from the previous step we got a
message when we opted to not install a bootloader. It tells us the LVM partition name to use and assign that to the
root flag.

Just like with the linux kernel, we set the initrd file which should also be in the /boot partition.

Finally, when you type "boot" and hit enter, it uses the previous settings to load linux!

A quick note, if you chose not to use LVM for your base system, and /boot is a part of root ("/"), then you can select

the root partition and just use longer paths to the kernel and initrd (/boot/ instead of /).

If all went as planned you will be greeted shortly by your login prompt. Don't be alarmed is goofy glitches occur

with output or the video, emergency grub isn't perfect. From here we will want to install EFI and some basic

utilities.

Installing EFI & Basic Linux Configuration

The default Wheezy installation will not have sudo setup so I recommend logging in as root first, and running this

to quickly install some utilities onto the system:

aptitude install sudo ssh bridge-utils parted ntfsprogs grub-efi-amd64

If you want to install all the utilities we are going to need, feel free to do so now as well:

sudo aptitude install grub-efi-amd64 sudo ssh bridge-utils parted ntfsprogs bzip2
build-essential libncurses-dev kernel-package fakeroot python-dev uuid-dev libglib2.0-dev
libyajl-dev bcc gcc-multilib iasl libpci-dev mercurial

Once these basic utilities are installed we want to run grub-install, and update-grub:

grub-install && update-grub

The install will create an EFI/debian folder, containing grubx64.efi, prepare the basic configuration, and if you

used the UEFI Live CD to boot, it should run a command to inform your UEFI BIOS of the new boot partition. If you

didn't use the UEFI Live CD then you may have to go through your UEFI Bios to boot and reinstall grub as an

extra step.

You can test rebooting now if you want, but I like to make some modifications first. I add my user to the

/etc/sudoers file, since this file is special you will have to use "wq!" from vi to write and close:

Next I change the ssh port in /etc/ssh/sshd_config, this step is 100% optional, but I find it helpful for security
among other things. The port is the fourth option down in the file, super easy to find.

Finally, I modify my /etc/network/interfaces file, creating a bridge which required the bridge-utils package, and will
help us when we get Xen ready later on.

The loopback network interface
auto lo xenbr0
iface lo inet loopback

The primary network interface
iface eth0 inet manual
iface xenbr0 inet static
 bridge_ports eth0
 address 10.0.1.20
 netmask 255.255.255.0
 network 10.0.1.0
 broadcast 10.0.1.255
 gateway 10.0.1.1

I then confirm that the changes worked by restarted my network and ssh:

/etc/init.d/networking restart
/etc/init.d/ssh restart

Now we can reboot! If you want to confirm the change to your UEFI bios, go ahead and select the boot options
and you'll see "debian" among the list now. If all goes well you should get the grub menu:

Give yourself a pat on the back, you just installed Linux without a bootloader, then cleanly introduced a pure EFI
solution.

Compiling a Xen Custom Linux Kernel
As a first step be sure you have the following packages installed:

sudo aptitude install grub-efi-amd64 sudo ssh bridge-utils parted ntfsprogs bzip2

build-essential libncurses-dev kernel-package fakeroot python-dev uuid-dev libglib2.0-dev
libyajl-dev bcc gcc-multilib iasl libpci-dev mercurial

Next run a "df" command to make sure you have at least 6 gigabytes of space available in the directory you plan
on compiling.

To speed up the compiling process, my source says you can modify the "/etc/kernel-pkg.conf" file and add a
concurrency setting to twice the number of physical cores:

CONCURRENCY_LEVEL=8

Now we can download our kernel, note that for this guide we are using Kernel 3.3, 3.3.1 from my experience is
buggy.

wget http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.3.tar.bz2

The download will take a few minutes, afterwards we need to extract it:

tar jxvf linux-3.3.tar.bz2

Enter the folder, and we are ready to configure the kernel:

cd linux-3.3/
make menuconfig

Our objective is specifically to compile a Xen compatible kernel with both EFI and pciback for VGA Passthrough.
Here is a hierarchical list of flags and their locations, followed by screenshots:

Enable the Block Layer
Partition Types

EFI GUI Partition Support

Processor Type and Features
Paravirtualized Guest Support

Xen Guest Support

EFI Runtime Service support
EFI Stub Support

Bus Options (PCI etc)
Xen PCI Frontend

Device Drivers
Block Devices

Xen block-device backend driver
Xen virtual block device support

Watchdog Timer Support
Xen Watchdog Support

Xen Driver Support
Xen memory balloon driver
Memory hotplug support for Xen balloon driver
Scrub pages before returning them to system
Xen /dev/xen/etchn device
Backend driver support
Xen Filesystem
Create compatibility mount point /proc/xen
Create xen entries under /sys/hypervisor
userspace grant access device driver
User-space grant reference allocator driver
Xen PCI-device backend driver

IOMMU Hardware Support

Enable Intel DMA Remapping Devices by default

Firmware Drivers
EFI Variable Support via sysfs

Now that we have configured out kernel, we are ready to compile!

make-kpkg clean
fakeroot make-kpkg --initrd --revision=2.1.custom kernel_image

Compiling the linux kernel on my CPU took about 15 minutes, so feel free to take a breather.

Once the compiling has completed, provided you see no errors and a message about a package ending with

.deb, you are ready to install your custom kernel!

cd ..
dpkg -i linux-image-3.3.0_2.0.custom_amd64.deb

The .deb file is portable and not 6 Gigabytes in size, so your modified kernel can be kept on a backup drive if you

want it for future installations.

Known Bugs

My first tests was with Kernel 3.3, and it worked great, but when I tried re-producing these results Kernel 3.3.1 had

been released. Kernel 3.3.1 with my instructions for some reason had kernel panics when booting with Xen, my

advice is to stick to 3.3 for now.

Compiling Xen

Downloading a Specific Revision

At the time of testing I was using Xen 4.2 Unstable revision 25138, the current latest.

Throughout my testing I have compiled four previous revisions, and Xen is almost constantly improving, but
occasionally an update will introduce a new bug. I suggest checking xenbits.xensource.com for the latest
revision.

As before, we want to make sure our required packages have been installed:

sudo aptitude install grub-efi-amd64 sudo ssh bridge-utils parted ntfsprogs bzip2
build-essential libncurses-dev kernel-package fakeroot python-dev uuid-dev libglib2.0-dev
libyajl-dev bcc gcc-multilib iasl libpci-dev mercurial

We can now download Xen using mercurial, note that the compiled source will require just over 1 Gigabyte of
space so be aware of where you put it. I borrowed the following lines from David Techer's blog.

rev=25138
hg clone -r $rev http://xenbits.xen.org/hg/xen-unstable.hg/ xen-unstable.hg-rev-${rev}

EFI Source Modifications

If you are using EFI you may want to modify the source before compiling. My experience has been that EFI
Bootloader will interfere with Xen's memory mapping, and instead of seeing all of your RAM it'll only see 511
Megabytes. To fix this modifications have to be made to "xen/arch/x86/setup.c", search for the line containing
"e820_raw_nr != 0" and apply these changes:

#if 0
 else if (e820_raw_nr != 0)
 {
 memmap_type = "Xen-e820";
 }
 else if (bootsym(lowmem_kb))
 {
 memmap_type = "Xen-e801";
 e820_raw[0].addr = 0;
 e820_raw[0].size = bootsym(lowmem_kb) << 10;
 e820_raw[0].type = E820_RAM;
 e820_raw[1].addr = 0x100000;
 e820_raw[1].size = bootsym(highmem_kb) << 10;
 e820_raw[1].type = E820_RAM;
 e820_raw_nr = 2;
 }
#endif

Compiling Process

The compiling process is actually quite simple, although the required package listing isn't really that clear which I
believe creates most of the problems.

Run these commands and if you don't see any error messages a .deb file will be created that you can use to
install Xen, and like with Linux it is portable:

./configure
make xen && make tools && make stubdom && make deb

Compiling took my system roughly 20 minutes, but I did not specify any concurrency flags.

If you want to run the installation of each item instead of a .deb that works fine as well, but I prefer the .deb as it is

portable, and the current Xen source creates it for you with the listed command. So now we navigate to the deb
file and install it:

cd dist/
dpkg -i xen-upstream-4.2-unstable.deb

Post-Install Tuning

Once the installation runs we aren't yet ready to boot into Xen, we have to make some changes to get everything
ready.

For our first step, we need to set some of the new init.d files to load at boot time using update-rc.d:

update-rc.d xencommons defaults 19 18
update-rc.d xend defaults 20 21
update-rc.d xendomains defaults 21 20
update-rc.d xen-watchdog defaults 22 23

You may ignore any warnings you see from running the above commands.

Next, if you visit your "/boot" directory, you will notice a bunch of files have been added. Most of these are not
needed, and deleting them will reduce the clutter of your grub file later.

A simple "ls -l" command will reveal that 3 of the new .gz files are links to the original, and the xen-syms file is
somewhat of a mystery. A very outdated source states that the xen-syms file contains debugging "symbols". I
delete all of the links and xen-syms, and my system appears to function just fine.

Now we need to tell Xen to load first, to do that we can rename a grub script:

mv /etc/grub.d/20_linux_xen /etc/grub.d/09_linux_xen

Now we can run update grub and it will add our Xen system to "/boot/grub/grub.cfg", which we can modify if
desired:

update-grub

Here is a copy of my Grub files Xen lines:

menuentry 'Debian GNU/Linux, with Xen 4.2-unstable and Linux 3.3.0' --class debian --class
gnu-linux --class gnu --class os --class xen {
 insmod part_gpt
 insmod ext2
 set root='(hd0,gpt2)'
 search --no-floppy --fs-uuid --set=root 6e3139b8-6cc6-4fa7-95f2-10bb99e76da3
 echo 'Loading Xen 4.2-unstable ...'
 multiboot /xen-4.2-unstable.gz placeholder dom0_mem=1024M
 echo 'Loading Linux 3.3.0 ...'
 module /vmlinuz-3.3.0 placeholder root=/dev/mapper/xen-linux ro quiet
xen-pciback.hide=(00:1a.0)(00:1b.0)(00:1d.0)(01:00.0)(01:00.1)(02:00.0)(03:00.0)
 echo 'Loading initial ramdisk ...'
 module /initrd.img-3.3.0
}
menuentry 'Debian GNU/Linux, with Xen 4.2-unstable and Linux 3.3.0 (recovery mode)' --class
debian --class gnu-linux --class gnu --class os --class xen {
 insmod part_gpt
 insmod ext2

 set root='(hd0,gpt2)'
 search --no-floppy --fs-uuid --set=root 6e3139b8-6cc6-4fa7-95f2-10bb99e76da3
 echo 'Loading Xen 4.2-unstable ...'
 multiboot /xen-4.2-unstable.gz placeholder
 echo 'Loading Linux 3.3.0 ...'
 module /vmlinuz-3.3.0 placeholder root=/dev/mapper/xen-linux ro single
 echo 'Loading initial ramdisk ...'
 module /initrd.img-3.3.0
}

Note that I used the dom0_mem flag to set my Dom0 memory to 1GB, and hid a variety of PCI devices. For now I
recommend omitting these lines until I have a chance to explain them.

As this is a protected system file, if editing with vi you will need to use "wq!" to write and close.

Now we can restart and if all goes well we will see Xen at the top of our grub menu, and be greeted by the Linux
login screen.

shutdown -r "now"

Once you login, we need to test whether our default Xen toolstack "xl" is working. The toolstack basically allows
our privileged virtual machine (aka Dom0) to communicate with the Xen Hypervisor. In one step we can verify that
it works and get some helpful information from our system:

xl dmesg

If this gave you an error, you may have missed a step and my only advice is to start googling. If it works, you'll get
a verbose printout regarding Xen's status.

If you are running an EFI Bootloaded system, you will want to check your System RAM value to make sure all of it
is there:

xl dmesg | grep -i "system ram"

If you see all of you RAM and xl is working, then congratulations your Xen compilation & installation was
successful and we can move onto the last stage, installing a Windows HVM and passing your graphics card.

Configuring Xen for VGA Passthrough:
Alright, now that we have booted into Xen and verified the xl command is working, and that our memory is the
right amount, we can begin setting up for an HVM installation.

My success with VGA Passthrough was as the secondary graphics device only, you will need some form of
alternative connection initially to install the base operating system.

If you plan on running various tests like I did, you may consider creating a second LVM so you can store windows
application and driver installers in case you need to reinstall. I found this saved me a lot of time.

Identifying PCI Devices in Linux

Most of the guides I found did not explain this, and as a Linux user who had only previously configured servers I
had never tinkered with how Linux addresses hardware components.

To view PCI devices connected to linux, you can use the "lspci" command. Similarly for USB devices "lsusb". I
didn't do any USB passing, so I will only be covering PCI in this section.

Some warnings to start with. If your board has a PCI Switch (most do) changing connecting devices can change

the device identification and cause all kinds of confusion late in the game. In that same sense, adding new PCI

devices to your HVM configuration in any order can affect its identification and render your system temporarily

inaccessible. My suggestion is similar to measure twice cut once. I have not yet figured out how to undo pciback

hidden devices, if anyone has I would love an addition. Another warning, passing one part of a device with

multiple functions will often pass both devices.

In any event, PCI devices are referenced numerically by linux, it uses a colin and period to separate three main

sections into this format "xx:yy.z", where xx is the bus, yy is the device, and z is the function. Here is the output for

my lspci:

> lspci

00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller

(rev 09)

00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI

Express Root Port (rev 09)

00:02.0 VGA compatible controller: Intel Corporation 2nd Generation Core Processor Family

Integrated Graphics Controller (rev 09)

00:16.0 Communication controller: Intel Corporation 6 Series/C200 Series Chipset Family MEI

Controller #1 (rev 04)
00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host

Controller #2 (rev 05)
00:1b.0 Audio device: Intel Corporation 6 Series/C200 Series Chipset Family High Definition

Audio Controller (rev 05)

00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port

1 (rev b5)

00:1c.5 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port

6 (rev b5)

00:1c.6 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port

7 (rev b5)

00:1c.7 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port

8 (rev b5)

00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host

Controller #1 (rev 05)
00:1f.0 ISA bridge: Intel Corporation Z68 Express Chipset Family LPC Controller (rev 05)

00:1f.2 SATA controller: Intel Corporation 6 Series/C200 Series Chipset Family 6 port SATA AHCI

Controller (rev 05)

00:1f.3 SMBus: Intel Corporation 6 Series/C200 Series Chipset Family SMBus Controller (rev 05)

01:00.0 VGA compatible controller: ATI Technologies Inc Barts XT [ATI Radeon HD 6800 Series]

01:00.1 Audio device: ATI Technologies Inc Barts HDMI Audio [Radeon HD 6800 Series]

02:00.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection

03:00.0 USB controller: Etron Technology, Inc. EJ168 USB 3.0 Host Controller (rev 01)

04:00.0 USB controller: Etron Technology, Inc. EJ168 USB 3.0 Host Controller (rev 01)

05:00.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:01.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:04.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:05.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:06.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:07.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:08.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

06:09.0 PCI bridge: PLX Technology, Inc. PEX 8608 8-lane, 8-Port PCI Express Gen 2 (5.0 GT/s)

Switch (rev ba)

08:00.0 PCI bridge: ASMedia Technology Inc. ASM108x PCIe to PCI Bridge Controller (rev 01)

0a:00.0 FireWire (IEEE 1394): VIA Technologies, Inc. VT6315 Series Firewire Controller (rev 01)

0b:00.0 Ethernet controller: Broadcom Corporation NetLink BCM57781 Gigabit Ethernet PCIe (rev

10)

You will notice that my graphics card is 01:00.0, but also 01:00.1, which is the onboard audio "function" of the

same device.

So, now you know that Linux identifies PCI devices using a numeric format, and that is how we can reference

them. For getting further details on your devices check the lspci man pages.

VNC Console Configuration

Grub Configuration

Once we have identified the device names, we get to modify our grub.cfg file. If you want you can modify the

scripts, but I find that is a bit harder to read, so I generally don't bother.

To hide PCI devices from Dom0 using your Grub configuration, we use the xen-pciback module, which should be

a part of your custom compiled kernel.

We use the PCI identification in the format of ##:##.#, in a line as follows:

xen-pciback.hide=(##:##.#)

Subsequent devices are added with a new set of parenthesis:

xen-pciback.hide=(##:##.#)(##:##.#)

This line would be appended to the end of the module line in your grub.cfg. As an example here is my grub.cfg

entry:

menuentry 'Debian GNU/Linux, with Xen 4.2-unstable and Linux 3.3.0' --class debian --class
gnu-linux --class gnu --class os --class xen {
 insmod part_gpt
 insmod ext2
 set root='(hd0,gpt2)'
 search --no-floppy --fs-uuid --set=root 6e3139b8-6cc6-4fa7-95f2-10bb99e76da3
 echo 'Loading Xen 4.2-unstable ...'
 multiboot /xen-4.2-unstable.gz placeholder dom0_mem=1024M
 echo 'Loading Linux 3.3.0 ...'
 module /vmlinuz-3.3.0 placeholder root=/dev/mapper/xen-linux ro quiet
xen-pciback.hide=(00:1a.0)(00:1b.0)(00:1d.0)(01:00.0)(01:00.1)(02:00.0)(03:00.0)
 echo 'Loading initial ramdisk ...'
 module /initrd.img-3.3.0
}

A device hidden from Dom0 can still be found using lspci, but the driver will not be active, and the device is not

controlled by Dom0. For this reason if you only have one graphics device, hiding it will effectively remove video

from your Dom0.

HVM Configuration

First we want to choose an initial size for your Windows hard drive. I went with 40 Gigabytes, it was plenty of

space to install and add some basic software for testing purposes. We will make a new Logical Volume which we

can then add Windows to:

lvcreate -L 40G -n windows xen

That line will create a 40 Gigabyte volume named "windows" in the Volume Group named "xen". Obviously it

won't work if you don't have available space or named your volume group differently.

Next we need to create a Windows configuration file, here is what mine looks like:

name='windows'
builder='hvm'
vcpus=4
maxvcpus=6
memory=6144
disk=[
 '/dev/xen/windows,,hda,w',
 '/dev/nas/software,,hdb,w'
]
vif=[
 'bridge=xenbr0,model=e1000'
]
pci=[
 '00:1a.0',
 '00:1b.0',
 '00:1d.0',
 '01:00.0',
 '01:00.1'
]
boot='c'
pae=1
nx=1
nestedhvm=1
viridian=1
videoram=16
stdvga=1
vnc=1
vncunused=1
vnclisten="0.0.0.0:10"
vncpasswd="password"
usb=1
usbdevice="tablet"
device_model_version="qemu-xen-traditional"

Depending on the name of your network bridge, and LVM partition you may want to modify those lines.
Additionally the PCI devices will need to be modified to reflect your system.

You will want to get a copy of your Windows installation CD in iso format, and place it somewhere on your drive.
To make a copy from a DVD insert the disk, verify the name using "parted -l" (it will be whichever device
complains about being read-only), and run this command with appropriate adjustments to "if" (input file):

dd if=/dev/dvd of=/home/installations/win7.iso

Since the first boot needs to install Windows, we want to make a few minor adjustments to this configuration:

disk=[
 '/dev/xen/windows,,hda,w',
'/dev/nas/software,,hdb,w'
 '/home/installers/win7.iso,,hdc,r,devtype=cdrom'
]
vif=[
 'bridge=xenbr0,model=e1000,mac=5a:50:a3:14:b1:1c'
]
#pci=[
'00:1a.0',
'00:1b.0',
'00:1d.0',
'01:00.0',
'01:00.1'
]
boot='dc'

I recommend commenting out the PCI devices until the system is installed and updated.

To start an HVM you use this syntax from termnal:

xl create windows

Where "windows" is the file containing your configuration, if it is in the current directory the name alone is fine,
otherwise you want to provide the path.

After running the "xl create" command, provided you get no errors, you can verify that the machine is booted
using:

xl list

You can monitor in more detail using this command:

xl top

Next we want to use VNC to connect to the HVM. As previously explained you will use your VNC Console utility,
on OS X you can open it from terminal:

open vnc://10.0.1.20:5910

Substitute your Xen systems IP for mine, and if you used another display port then you will want to adjust that as
well.

The installation window that appears in the VNC Console will like installing Windows normally. Once Windows is
installed, I recommend getting all the Windows updates installed possible.

Some additional commands from terminal to help you control your system if it locks up:

xl destroy windows
xl reboot windows

My experience with VNC Consoles are that they can sometimes get laggy. You can close and re-launch the VNC
Console without affecting the running system, so try that before resorting to xl commands.

Installing ATI Drivers

When you install any drivers, be they ATI or Windows default VGA Drivers, the VNC Console will go blank and
the GPU will take-over. Do not be alarmed, this is normal. If you have not passed USB Controllers to the HVM you
can still control the machine from VNC but you will need to use the connected monitor to see what you are doing.

My tests have been successful with versions 12.2 and 12.3 of the ATI Drivers. However, you may need to run the
installer twice for complete functionality.

First, download the drivers from AMD's website. Then when you run the installer select "Custom":

Screenshot!!!

Be sure to deselect any of the unnecessary features, specifically ATI Catalyst Control Center (CCC). We only
want the very basic set of contents, the drivers and required install items:

Screenshot!!!

Then you will need to reboot twice to make sure the installation worked successfully. Finally you can re-run the
installation again, this time either express or custom with all check boxes should add ATI CCC successfully to the
system:

Screenshot!!!

After that you will have a fully functional VGA Passthrough Windows 7 HVM! Congratulations you finished the
guide! If you are curious about any other topics, I have prepared plenty of reference links below for your reading
pleasure.

Known Bugs
A windows installation bug some may be aware of causes an enormous delay if you do not specifically format the
partition before selecting to install. I have encountered this many times, so out of habit I select "new" and after it
makes the partition I select "format" then "install".

ATI Drivers if installed with the express option may result in a BSOD, if that happens you can try booting into safe
mode and removing the drivers. My success with driver removal was erratic, sometimes it worked other times I
had to reinstall Windows.

The newer qemu-xen (not traditional) has better performance in most areas from my tests, but PCI Passthrough
fails with this error per device:

libxl: error: libxl_qmp.c:239:qmp_handle_error_response: received an error message from QMP
server: Parameter 'driver' expects a driver name

The devices are listed then under xl pci-list windows, however when the machine shuts down xl logs (not qemu)
indicates the devices were not actually passed with this error per device:

ibxl: error: libxl_qmp.c:239:qmp_handle_error_response: received an error message from QMP
server: Device 'pci-pt-00_1a.0' not found

Qemu Upstream has various bugs, it always logs a request to /etc/qemu-ifdown, a script or file that does not exist,
and restarting HVM's fail, the qemu log clearly indicates the difference between shutdown and restart, but the xl
logs always show destroy codes.

Not really a bug, but I would like a way to specify a domain id in the configuration, clearly it is being passed to
qemu when launched, so if there isn't a flag available yet I want to see about adding one to the source. If anyone
knows about this, please add it.

Other Related Topics:
While many guides for these utilities exist, I am writing these with specific Xen uses in mind.

SSH
SSH connections allow you to create a secure connection for SFTP file transfers and terminal access of a remote
system. In our case it is extremely helpful for connecting to a Xen server from a remote machine. As an example,
inside the network I can use my laptop from upstairs to start Windows, or reset the PFSense router.

Connecting through SSH is extremely simple. If you followed my guide, you should have it installed, and possibly
even modified the default port. Default port modification is entirely optional, but it is a secure decision.

From Linux you can install SSH the same as was done in my guide. If using Mac it should already be included. If
using windows Download PuTTY, it's a very tiny portable utility.

On Linux or Mac, here are some methods to connect over SSH:

ssh user@192.168.1.6
ssh -p 32456 user@192.168.1.6

The first line connects with the username of "user" to the machine at IP "192.168.1.6". The second specifies the
port to use, this is only required if you changed the default port.

The first connection may ask you to accept an SSL certificate, this SSL certificate was generated by the system
when you installed SSH, say yes to connect.

Every time you connect you should be prompted for the password of the user you are attempting to login as.

That concludes our SSH overview. I highly recommend connecting over SSH during this guide, it'll make the
installation easier, and you don't have to pipe output to "more" because you can scroll back through it.

LVM Partitioning

Logical Volume Manager in Linux is a wonderful and flexible tool, and allows you to create dynamic work areas
on one or more drives.

Before we get to the LVM specific commands, I wanted to put together a quick overview of how partitioning works,
because it can get very confusing.

To start with we have three important parts to get familiar with. A Partition Table, Partitions, and File Systems.

A partition table, such as msdos or gpt is how the disk stores information about its partitions.

Partitions are assigned space, the start and length are usually stored by the partition table.

File Systems are applied to a partition, allowing you a structure by which to store and retrieve data within a
partition.

So what makes this so complex? Well, instead of creating a file system for your partition, you could create another
partition table and more partitions inside of that. LVM does exactly this, and without a firm understanding of the
system it gets really hard to figure out what's happening.

As a visual aid, here is a crude drawing:

Hand Drawn Diagram

My SSD configuration is depicted by this drawing. It has three physical partitions, EFI, BOOT, and LVM. EFI has a
FAT32 File System. BOOT has an Ext4 File System. LVM is managed by the systems Logical Volume Manager.

You will notice that inside the LVM I have two partitions, one for Linux, another for Swap. Swap doesn't have a file
system, but the Linux partition is ext4.

But there are three more logical volumes as well: windows, pfsense, and squeeze. Each of these contains a
partition table, not a file system.

Notice that Windows partition table contains one partition for Windows, and probably msdos bootloader code in
the start of the windows LVM partition. Because Windows thinks this is a hard drive, it creates a partition table,

NOT directly as a file system.

The same is true of both Linux and PFSense, who have created partitions as well.

With LVM's we can choose to resize the partition, and then from inside the HVM we can expand the file system to
fill the new space. In that same sense we could also shrink it in some cases.

Here is another diagram depicting a dual-boot machine, one part Windows the other part Linux. Size isn't so
important, but notice that we have a partition table, a boot partition that probably uses Grub to load either
Windows or Linux, and a partiton for each system:

Hand Drawn Diagram

Turning this into an HVM would be very difficult, either the msdos boot code is at the start of the partition tables, or
if grub is launching windows then we would have to somehow create a new launcher with our HVM LVM
Partition. Generally to do this you would have to copy the entire disk, which means you need an even larger
partition to store the data.

In this example there isn't really a clean solution, but this is just to demonstrate each component and why it is
important. Now that we understand them, we can begin learning how to manage Logical Volumes!

Let's start with some of the basic utilities:

vgdisplay - Displays Volume Groups
lvdisplay - Displays Logical Volumes
lvcreate - Create a logical volume
lvremove - Delete a logical volume
lvresize - Resize a logical volume
parted - GNU Parted utility used for modern partition management
mkfs - Command used to create a file system when pointed at a partition.

Note that resizing the partition does not automatically tell the file system it can use all the newly created space. If
you resize the LVM partition of your Windows HVM, you need to access Windows and expand the NTFS File
System from the Windows Disk Manager.

The syntax to create a simple volume is as follows:

lvcreate -L 40G -n volume group

The syntax to delete a volume is:

lvremove /dev/group/volume

The syntax to resize a volume is:

lvresize -L+4 /dev/group/volume

Note that in all of the above examples, group is the name you gave the volume group, and volume is the name
you gave the logical volume. In the create example "-L 40G" specifies a 40 Gigabyte partition size. In the lvresize
"-L+4" says to add 4 Gigabytes to the partition.

I won't be writing a guide on parted, it's a bit complex. I recommend reading the man pages, just know that if you
want to manage a partition you would probably use parted to do so.

If you created a logical volume for storage, you can go strait to creating a file system using the mkfs command as

follows:

mkfs -t type /dev/group/volume

Note that the "-t type" is where you specify the type of file system, such as ext4, ext3, ntfs, fat32, etc. To be able to
create ntfs file systems you have to add the ntfsprogs package into your system. Similarly you need the dosfstools
package for vfat, the newer FAT file system used by Windows 7.

That concludes a quick and dirty overview of LVM and Partitioning. I hope it helps with managing Xen HVM's.

Backup and Restore with dd

the dd utility is a fantastic tool that makes it possible to create backups and complete copies of your data, and at
the same time has earned the nickname of "Data Destroyer" because it is easy to accidentally mixup the syntax.

To keep things strait, I remember the source and target as Input File, and Output File. While file isn't always
accurate to our activity, it gets the general idea accross.

If I want to simply backup a whole drive to a file, I can do this:

dd if=/dev/sda of=/home/backup.img

For a single partition instead, I can add a number to "sda":

dd if=/dev/sda1 of=/home/backup.img

If I want to copy the contents of one drive to another I can do this:

dd if=/dev/sda of=/dev/sdb

With LVM's I can even make a new volume specifically for the purpose of backing up another volume:

lvcreate -L 40G -n backup xen
dd if=/dev/xen/windows of=/dev/xen/backup

Restoring is incredibly easy, simply reverse the input and output values. The only time this will not work is when
you are attempting to overwrite the drive you are working from, if you need to restore your Linux system, you
should boot into a Live CD to run a dd restore.

That concludes the dd tutorial.

References:
This is a list of referenced material during my testing, each of the items listed served a specific function in the
creation of this guide.

For installing EFI Grub on Wheezy I found this short and simple guide to be exceptional:

http://blog.garyhawkins.me.uk/?p=185

This guide was very helpful and mostly accurate for compiling the Linux Kernel:

http://vanilja.org/kernel/

Kernel Source

http://kernel.org/

Kernel Flag Database, was super helpful in verifying the various kernel flags:

http://cateee.net/lkddb/

Compilation Instructions were somewhat invalid for 4.2 but contain some helpful steps and information:

http://wiki.xensource.com/xenwiki/Xen4.1

http://wiki.xensource.com/xenwiki/Xen4.0

Mercurial Xen Source:

http://xenbits.xen.org/hg/xen-unstable.hg/

David Techer's Blog has nVidia patch information, and I used his method to set the revision for mercurial

download:

http://www.davidgis.fr/blog/index.php?2012/02/22/884-xen-42-the-way-to-compile-xen-has-

changedrevision24869

EFI Bootloader memory error, this fellow encountered it and posted his solution, which I used with some

adjustments for the latest source:

http://serverfault.com/questions/342109/xen-only-sees-512mb-of-system-ram-should-be-8gb-uefi-boot

This contains the manuals for commands and configurations of xl, xm, and various other Xen components:

http://wiki.xen.org/wiki/Xen_Man_Pages

The only location I found mention of xen-syms, clearly outdated:

http://xen.xensource.com/files/xen_user_manual.pdf

HTML to Wiki converter, used to turn this HTML built guide into a Wikipedia copy paste:

http://labs.seapine.com/htmltowiki.cgi

http://en.wikipedia.org/wiki/Wikipedia:Tools/Editing_tools#From_HTML

