[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] [MirageOS-devel] Results of Formal vote on Unicore Proposal : Passed & Next Steps
Hi everyone. this is a quick note that the proposal for the Unicore Proposal (see http://markmail.org/message/ly3f6e53nv3jaxd7) has passed. The calculation is as follows: 1) XAPI subproject: quorum not met; subproject’s vote discounted 2) Hypervisor subproject: quorum met 7 votes in favour (min required 3), no votes against => 100% This means 100% agreement for the proposal @Simon, @Felipe: we need to start planning next steps and put the infrastructure in place 1) Lars: Update https://www.xenproject.org/help/mailing-list.html minios-devel section to reflect for the fact that the two projects will share a mailing list for now 2) Lars: Upload proposal to wiki 3) Simon, Felipe: Create some content for https://wiki.xenproject.org/wiki/Category:Unicore_Devel and https://wiki.xenproject.org/wiki/Category:Unicore, or let Lars know what roughly should be on the pages. Both, Simon & Felipe to ley Lars know of wiki user names such that write access can be given. We should probably highlight and link to some of the basic workflows for contributions. Eventually build, etc. instructions and other items specific to the project should be added. 4) Lars to create wiki pages. 5) Simon, Felipe: verify repositories which need to be created. We can start with personal repos, if that helps @Simon, @Felipe, @Zibby: 6) Simon, Felipe, Lars, Zibby: Draft content for website landing page (see https://xenproject.org/developers/teams.html for examples). If you let me know of any highlights and/or presentations to add, we can just go ahead with this 7) Plan some PR (after enough of 1-6 has been done): e.g. blog post, linux.com article, xen-announce announcement, … Regards Lars On 29/09/2017, 13:07, "Lars Kurth" <lars.kurth@xxxxxxxxxx> wrote: Dear committers, in accordance with https://www.xenproject.org/governance.html, I need the leadership teams of the two mature projects – the Hypervisor and the XAPI project – to vote on this proposal. The Advisory Board is endorsing the proposal and there seems to be wide consensus amongst community members. The specific voting rules in this case are outlined in section https://www.xenproject.org/governance.html#project-decisions People allowed to vote on behalf of the Hypervisor project are: Julien Grall, Andy Cooper, George Dunlap, Ian Jackson, Jan Beulich, Konrad R Wilk, Stefano Stabellini, Tim Deegan, Wei Liu People allowed to vote on behalf of the XAPI project are: Jon Ludlam, Chandrika Srinivasan, David Scott, Euan Harris, Germano Percossi, Siddharth Vinoth Kumar, John Else, Mate Lakat, Konstantina Chremmou, Rob Hoes, Si Beaumont, Thanos Makatos, Thomas Sanders, Vineeth Thampi Raveendran, Zheng Li I propose to tally the votes by Friday the 6th of October. You can reply via +1: for proposal -1: against proposal in public or private. Votes will be tallied by subproject – aka the Hypervisor and XAPI project by % for the proposal - and then averaged across sub-projects that achieved the quorum. Sub-project needs to achieve the following quorum of votes in favour for the sub-project’s vote to count Hypervisor: 3 + votes XAPI: 5 + votes The proposals are attached Regards Lars PROPOSAL: Unicore ================= Roles ----- Project Leads: Simon Kuenzer <simon.kuenzer@xxxxxxxxx> (co-lead) Felipe Huici <felipe.huici@xxxxxxxxx> (co-lead) Florian Schmidt <florian.schmidt@xxxxxxxxx> Project Mentor: Lars Kurth <lars.kurth@xxxxxxxxxx> Project Sponsors: Stefano Stabellini <sstabellini@xxxxxxxxxx> Wei Liu <wei.liu2@xxxxxxxxxx> Background ---------- In recent years, several papers and projects dedicated to unikernels have shown the immense potential for performance gains that these have. By leveraging specialization and the use of minimalistic OSes, unikernels are able to yield impressive numbers, including fast instantiation times (tens of milliseconds or less), tiny memory footprints (a few MBs or even KBs), high network throughput (10-40 Gb/s), and high consolidation (e.g., being able to run thousands of instances on a single commodity server), not to mention a reduced attack surface and the potential for easier certification. Unikernel projects worthy of mention include MirageOS, ClickOS, Erlang on Xen, OSv, HALVM, and Minicache, Rump, among others. The fundamental drawback of unikernels is that they require that applications be manually ported to the underlying minimalistic OS (e.g. having to port nginx, snort, mysql or memcached to MiniOS or OSv); this requires both expert work and often considerable amount of time. In essence, we need to pick between either high performance with unikernels, or no porting effort but decreased performance and decreased efficiency with standard OS/VM images. The goal of this proposal is to change this status quo by providing a highly configurable unikernel code base; we call this base Unicore. This project also aims to concentrate the various efforts currently going on in the Xen community regarding minimalistic OSes (essentially different variants of MiniOS). We think that splitting the community across these variants is counter-productive and hope that Unicore will provide a common place for all or most improvements and customizations of minimalistic OSes. The long term goal is to replace something like MiniOS with a tool that can automatically build such a minimalistic OS. Unicore - The "Unikernel Core" --------------------------------- The high level goal of Unicore is to be able to build unikernels targeted at specific applications without requiring the time-consuming, expert work that building such a unikernel requires today. An additional goal (or hope) of Unicore is that all developers interested in unikernel development would contribute by supplying libraries rather than working on independent projects with different code bases as it is done now. The main idea behind Unicore is depicted in Figure 1 and consists of two basic components: [Attachment: unicore-oneslider.pdf] Figure 1. Unicore Architecture. Library pools would contain libraries that the user of Unicore can select from to create the unikernel. From the bottom up, library pools are organized into (1) the architecture library tool, containing libraries specific to a computer architecture (e.g., x86_64, ARM32 or MIPS); (2) the platform tool, where target platforms can be Xen, KVM, bare metal (i.e. no virtualization) and user-space Linux; and (3) the main library pool, containing a rich set of functionality to build the unikernel from. This last library includes drivers (both virtual such as netback/netfront and physical such as ixgbe), filesystems, memory allocators, schedulers, network stacks, standard libs (e.g. libc, openssl, etc.), runtimes (e.g. a Python interpreter and debugging and profiling tools. These pools of libraries constitute a code base for creating unikernels. As shown, a library can be relatively large (e.g libc) or quite small (a scheduler), which should allow for a fair amount of customization for the unikernel. The Unicore build tool is in charge of compiling the application and the selected libraries together to create a binary for a specific platform and architecture (e.g., Xen on x86_64). The tool is currently inspired by Linux’s kconfig system and consists of a set of Makefiles. It allows users to select libraries, to configure them, and to warn them when library dependencies are not met. In addition, the tool can also simultaneously generate binaries for multiple platforms. As an example, imagine a user wanting to generate a network driver domain unikernel. In this case, we would assume the “application” to be the netback driver. To select this application, the user would first run “make menuconfig” from within the netback application folder. The Makefile there would set a variable to indicate what the application is, and would include the main Unicore Makefiles so that the unikernel can be built (Step 1 in the figure). Using the menu-based system, the user chooses the relevant libraries; for a Xen driver domain this would include a physical network driver, the netback driver, the libxenplat library and a library from the architecture library pool such as libx86_64arch (Step 2 in the figure). With this in place, the user saves the configuration and types “make” to build the unikernel (Step 3) and “xl create” to run it (Step 4). A note on the ABI/API exposed to the application: because Unicore allows for customization of the unikernels, the ABI (or API since there is no kernel) would be custom, that is, defined by the libraries the user selected. Having said that, it would be perfectly possible, for instance, to build POSIX-compliant unikernels with it (e.g. similar to Rump, but in principle with much more specialized OS layers). Finally, it is worth pointing out that we use the term application loosely: another clear target for Unicore is the building of runtime-specific unikernels (e.g. a unikernel able to run Python or OCaml scripts as is the case with MirageOS). Relevance to Xen and its Community ----------------------------------- Unikernels are important to a number of areas relevant to the Xen community, including IoT, automotive, stub domains, and driver domain/dom0 disaggregation. Unicore could help boost the progress in all of these areas by quickly providing the necessary tools to create unikernels for them. For instance, for a driver domain, the user would include the “library” containing the relevant hardware driver and corresponding back-end driver, and in principle Unicore would take care of the rest. In addition, Unicore could eventually replace Mini-OS, providing a cleaner, more stable and flexible base from which to build unikernels for projects (the modularization of Mini-OS is in fact already taking place). Current Status -------------- Unicore is at an early stage. For now it includes some base libraries with code extracted from Mini-OS as well as a build tool inspired by Linux's KConfig system. Unicore is currently able to build "hello world" unikernels for Xen and Linux user space on x86_64 and ARMv7. Incubation ---------- The reason behind making Unicore a Xen sub-project project is to (1) bring the existence of Unicore to the attention of the Xen community and to outside world; (2) to attempt to harness interest and potentially development cycles from people and companies interested in unikernels; (3) to concentrate maintenance resources from people interested in unikernels within the community; and (4) to have a legal entity behind the project. License ------- The main license of the run-time components of Unicore will be a 3-clause BSD license, unless there is a good reason not to use it (e.g. we may import 2-clause BSD licensed code from Mini-OS, which we would *not* anticipate to change). The Makefile system would be licensed under GPL v2 or later as we want to be able to use KConfig functionality from Buildroot/Linux. Required Infrastructure ----------------------- The official repositories should be created on [http://xenbits.xenproject.org/] under `unicore.git`. There should be a main repository for the core unicore implementation and additional repositories for some more advanced extension libraries (e.g., lwIP, newlib). ### Main repository `unicore.git` ### Repositories for extension libraries Repositories for additional libraries that are supported by the Unicore project should exist under a separate directory: `unicore-libs/` For example: `unicore-libs/lwip.git` `unicore-libs/newlib.git` ### Mailing list In the beginning we would use the MiniOS mailing list (minios-devel@xxxxxxxxxxxxxxxxxxxx). When we get traction with Unicore we could consider splitting that traffic onto a unicore mailing list. _______________________________________________ MirageOS-devel mailing list MirageOS-devel@xxxxxxxxxxxxxxxxxxxx https://lists.xenproject.org/cgi-bin/mailman/listinfo/mirageos-devel
|
Lists.xenproject.org is hosted with RackSpace, monitoring our |