|
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] [Xen-devel] [PATCH v3] Xen: Spread boot time page scrubbing across all available CPU's
From: Malcolm Crossley <malcolm.crossley@xxxxxxxxxx>
The page scrubbing is done in 128MB chunks in lockstep across all the CPU's.
This allows for the boot CPU to hold the heap_lock whilst each chunk is being
scrubbed and then release the heap_lock when all CPU's are finished scrubing
their individual chunk. This allows for the heap_lock to not be held
continously and for pending softirqs are to be serviced periodically across
all CPU's.
The page scrub memory chunks are allocated to the CPU's in a NUMA aware
fashion to reduce socket interconnect overhead and improve performance.
Specifically in the first phase we scrub at the same time on all the
NUMA nodes that have CPUs - we also weed out the SMT threads so that
we only use cores (that gives a 50% boost). The second phase is to use
all of the CPUs for the NUMA nodes that have no CPUs.
This patch reduces the boot page scrub time on a 128GB 64 core AMD Opteron
6386 machine from 49 seconds to 3 seconds.
On a IvyBridge-EX 8 socket box with 1.5TB it cuts it down from 15 minutes
to 117 seconds.
v2
- Reduced default chunk size to 128MB
- Added code to scrub NUMA nodes with no active CPU linked to them
- Be robust to boot CPU not being linked to a NUMA node
v3:
- Don't use SMT threads
- Take care of remainder if the number of CPUs (or memory) is odd
- Restructure the worker thread
- s/u64/unsigned long/
Signed-off-by: Malcolm Crossley <malcolm.crossley@xxxxxxxxxx>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@xxxxxxxxxx>
---
docs/misc/xen-command-line.markdown | 10 ++
xen/common/page_alloc.c | 177 +++++++++++++++++++++++++++++++----
2 files changed, 167 insertions(+), 20 deletions(-)
diff --git a/docs/misc/xen-command-line.markdown
b/docs/misc/xen-command-line.markdown
index 87de2dc..a7da227 100644
--- a/docs/misc/xen-command-line.markdown
+++ b/docs/misc/xen-command-line.markdown
@@ -197,6 +197,16 @@ Scrub free RAM during boot. This is a safety feature to
prevent
accidentally leaking sensitive VM data into other VMs if Xen crashes
and reboots.
+### bootscrub_chunk_
+> `= <size>`
+
+> Default: `128MiB`
+
+Maximum RAM block size chunks to be scrubbed whilst holding the page heap lock
+and not running softirqs. Reduce this if softirqs are not being run frequently
+enough. Setting this to a high value may cause cause boot failure, particularly
+if the NMI watchdog is also enabled.
+
### cachesize
> `= <size>`
diff --git a/xen/common/page_alloc.c b/xen/common/page_alloc.c
index 601319c..3ad6e1d 100644
--- a/xen/common/page_alloc.c
+++ b/xen/common/page_alloc.c
@@ -65,6 +65,12 @@ static bool_t opt_bootscrub __initdata = 1;
boolean_param("bootscrub", opt_bootscrub);
/*
+ * bootscrub_blocksize -> Size (bytes) of mem block to scrub with heaplock held
+ */
+static unsigned int __initdata opt_bootscrub_chunk = 128 * 1024 * 1024;
+size_param("bootscrub_chunk", opt_bootscrub_chunk);
+
+/*
* Bit width of the DMA heap -- used to override NUMA-node-first.
* allocation strategy, which can otherwise exhaust low memory.
*/
@@ -90,6 +96,16 @@ static struct bootmem_region {
} *__initdata bootmem_region_list;
static unsigned int __initdata nr_bootmem_regions;
+struct scrub_region {
+ unsigned long offset;
+ unsigned long start;
+ unsigned long per_cpu_sz;
+ unsigned long rem;
+ cpumask_t cpu;
+};
+static struct scrub_region __initdata region[MAX_NUMNODES];
+static unsigned long __initdata chunk_size;
+
static void __init boot_bug(int line)
{
panic("Boot BUG at %s:%d", __FILE__, line);
@@ -1256,45 +1272,166 @@ void __init end_boot_allocator(void)
printk("\n");
}
+void __init smp_scrub_heap_pages(void *data)
+{
+ unsigned long mfn, start, end;
+ struct page_info *pg;
+ struct scrub_region *r;
+ unsigned int temp_cpu, node, cpu_idx = 0;
+ unsigned int cpu = smp_processor_id();
+
+ if ( data )
+ r = data;
+ else {
+ node = cpu_to_node(cpu);
+ if ( node == NUMA_NO_NODE )
+ return;
+ r = ®ion[node];
+ }
+ ASSERT(r != NULL);
+
+ /* Determine the current CPU's index into CPU's linked to this node*/
+ for_each_cpu ( temp_cpu, &r->cpu )
+ {
+ if ( cpu == temp_cpu )
+ break;
+ cpu_idx++;
+ }
+
+ /* Calculate the starting mfn for this CPU's memory block */
+ start = r->start + (r->per_cpu_sz * cpu_idx) + r->offset;
+
+ /* Calculate the end mfn into this CPU's memory block for this iteration */
+ if ( r->offset + chunk_size > r->per_cpu_sz ) {
+ end = r->start + (r->per_cpu_sz * cpu_idx) + r->per_cpu_sz;
+ if ( r->rem && ((cpumask_weight(&r->cpu) - 1 == cpu_idx )) )
+ end += r->rem;
+ }
+ else
+ end = start + chunk_size;
+
+ for ( mfn = start; mfn < end; mfn++ )
+ {
+ pg = mfn_to_page(mfn);
+
+ /* Check the mfn is valid and page is free. */
+ if ( !mfn_valid(mfn) || !page_state_is(pg, free) )
+ continue;
+
+ scrub_one_page(pg);
+ }
+ wmb();
+}
+
/*
- * Scrub all unallocated pages in all heap zones. This function is more
- * convoluted than appears necessary because we do not want to continuously
- * hold the lock while scrubbing very large memory areas.
+ * Scrub all unallocated pages in all heap zones. This function uses all
+ * online cpu's to scrub the memory in parallel.
*/
void __init scrub_heap_pages(void)
{
- unsigned long mfn;
- struct page_info *pg;
+ cpumask_t node_cpus, temp_cpus, all_worker_cpus = {{ 0 }};
+ unsigned int i, j, cpu, sibling;
+ unsigned long offset, max_per_cpu_sz = 0;
+ unsigned long start, end;
+ unsigned long rem = 0;
if ( !opt_bootscrub )
return;
- printk("Scrubbing Free RAM: ");
+ /* Scrub block size */
+ chunk_size = opt_bootscrub_chunk >> PAGE_SHIFT;
+ if ( chunk_size == 0 )
+ chunk_size = 1;
- for ( mfn = first_valid_mfn; mfn < max_page; mfn++ )
+ /* Round #0 - figure out amounts and which CPUs to use */
+ for_each_online_node ( i )
{
+ /* Calculate Node memory start and end address */
+ start = max(node_start_pfn(i), first_valid_mfn);
+ end = min(node_start_pfn(i) + node_spanned_pages(i), max_page);
+ /* CPUs that are online and on this node (if none, that it is OK */
+ cpumask_and(&node_cpus, &node_to_cpumask(i), &cpu_online_map);
+ cpumask_copy(&temp_cpus, &node_cpus);
+ /* Rip out threads. */
+ for_each_cpu ( j, &temp_cpus )
+ {
+ cpu = 0;
+ for_each_cpu(sibling, per_cpu(cpu_sibling_mask, j)) {
+ if (cpu++ == 0) /* Skip 1st CPU - the core */
+ continue;
+ cpumask_clear_cpu(sibling, &node_cpus);
+ }
+ }
+ cpumask_or(&all_worker_cpus, &all_worker_cpus, &node_cpus);
+ if ( cpumask_empty(&node_cpus) ) { /* No CPUs on this node. */
+ rem = 0;
+ region[i].per_cpu_sz = (end - start);
+ } else {
+ rem = (end - start) % cpumask_weight(&node_cpus);
+ region[i].per_cpu_sz = (end - start) / cpumask_weight(&node_cpus);
+ if ( region[i].per_cpu_sz > max_per_cpu_sz )
+ max_per_cpu_sz = region[i].per_cpu_sz;
+ }
+ region[i].start = start;
+ region[i].rem = rem;
+ cpumask_copy(®ion[i].cpu, &node_cpus);
+
+ }
+ cpu = smp_processor_id();
+ /* Round default chunk size down if required */
+ if ( max_per_cpu_sz && chunk_size > max_per_cpu_sz )
+ chunk_size = max_per_cpu_sz;
+
+ printk("Scrubbing Free RAM on %u nodes using %u CPUs: ",
num_online_nodes(),
+ cpumask_weight(&all_worker_cpus));
+
+ /* Round: #1 - do NUMA nodes with CPUs */
+ for ( offset = 0; offset < max_per_cpu_sz; offset += chunk_size )
+ {
+ for_each_online_node ( i )
+ region[i].offset = offset;
+
process_pending_softirqs();
- pg = mfn_to_page(mfn);
+ spin_lock(&heap_lock);
+ on_selected_cpus(&all_worker_cpus, smp_scrub_heap_pages, NULL, 1);
+ spin_unlock(&heap_lock);
- /* Quick lock-free check. */
- if ( !mfn_valid(mfn) || !page_state_is(pg, free) )
+ printk(".");
+ }
+
+ /* Round #2: NUMA nodes with no CPUs get scrubbed with all CPUs. */
+ for_each_online_node ( i )
+ {
+ node_cpus = node_to_cpumask(i);
+
+ if ( !cpumask_empty(&node_cpus) )
continue;
- /* Every 100MB, print a progress dot. */
- if ( (mfn % ((100*1024*1024)/PAGE_SIZE)) == 0 )
- printk(".");
+ /* We already have the node information from round #0 */
+ end = region[i].start + region[i].per_cpu_sz;
+ rem = region[i].per_cpu_sz % cpumask_weight(&all_worker_cpus);
- spin_lock(&heap_lock);
+ region[i].rem = rem;
+ region[i].per_cpu_sz /= cpumask_weight(&all_worker_cpus);
+ max_per_cpu_sz = region[i].per_cpu_sz;
+ if ( max_per_cpu_sz && chunk_size > max_per_cpu_sz )
+ chunk_size = max_per_cpu_sz;
+ cpumask_copy(®ion[i].cpu, &all_worker_cpus);
- /* Re-check page status with lock held. */
- if ( page_state_is(pg, free) )
- scrub_one_page(pg);
+ for ( offset = 0; offset < max_per_cpu_sz; offset += chunk_size )
+ {
+ region[i].offset = offset;
- spin_unlock(&heap_lock);
- }
+ process_pending_softirqs();
+
+ spin_lock(&heap_lock);
+ on_selected_cpus(&all_worker_cpus, smp_scrub_heap_pages,
®ion[i], 1);
+ spin_unlock(&heap_lock);
- printk("done.\n");
+ printk(".");
+ }
+ }
/* Now that the heap is initialized, run checks and set bounds
* for the low mem virq algorithm. */
--
1.7.7.6
_______________________________________________
Xen-devel mailing list
Xen-devel@xxxxxxxxxxxxx
http://lists.xen.org/xen-devel
|
![]() |
Lists.xenproject.org is hosted with RackSpace, monitoring our |