[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [PATCH v3] x86/io-apic: fix directed EOI when using AMD-Vi interrupt remapping


  • To: Roger Pau Monné <roger.pau@xxxxxxxxxx>
  • From: Jan Beulich <jbeulich@xxxxxxxx>
  • Date: Wed, 30 Oct 2024 11:57:39 +0100
  • Autocrypt: addr=jbeulich@xxxxxxxx; keydata= xsDiBFk3nEQRBADAEaSw6zC/EJkiwGPXbWtPxl2xCdSoeepS07jW8UgcHNurfHvUzogEq5xk hu507c3BarVjyWCJOylMNR98Yd8VqD9UfmX0Hb8/BrA+Hl6/DB/eqGptrf4BSRwcZQM32aZK 7Pj2XbGWIUrZrd70x1eAP9QE3P79Y2oLrsCgbZJfEwCgvz9JjGmQqQkRiTVzlZVCJYcyGGsD /0tbFCzD2h20ahe8rC1gbb3K3qk+LpBtvjBu1RY9drYk0NymiGbJWZgab6t1jM7sk2vuf0Py O9Hf9XBmK0uE9IgMaiCpc32XV9oASz6UJebwkX+zF2jG5I1BfnO9g7KlotcA/v5ClMjgo6Gl MDY4HxoSRu3i1cqqSDtVlt+AOVBJBACrZcnHAUSuCXBPy0jOlBhxPqRWv6ND4c9PH1xjQ3NP nxJuMBS8rnNg22uyfAgmBKNLpLgAGVRMZGaGoJObGf72s6TeIqKJo/LtggAS9qAUiuKVnygo 3wjfkS9A3DRO+SpU7JqWdsveeIQyeyEJ/8PTowmSQLakF+3fote9ybzd880fSmFuIEJldWxp Y2ggPGpiZXVsaWNoQHN1c2UuY29tPsJgBBMRAgAgBQJZN5xEAhsDBgsJCAcDAgQVAggDBBYC AwECHgECF4AACgkQoDSui/t3IH4J+wCfQ5jHdEjCRHj23O/5ttg9r9OIruwAn3103WUITZee e7Sbg12UgcQ5lv7SzsFNBFk3nEQQCACCuTjCjFOUdi5Nm244F+78kLghRcin/awv+IrTcIWF hUpSs1Y91iQQ7KItirz5uwCPlwejSJDQJLIS+QtJHaXDXeV6NI0Uef1hP20+y8qydDiVkv6l IreXjTb7DvksRgJNvCkWtYnlS3mYvQ9NzS9PhyALWbXnH6sIJd2O9lKS1Mrfq+y0IXCP10eS FFGg+Av3IQeFatkJAyju0PPthyTqxSI4lZYuJVPknzgaeuJv/2NccrPvmeDg6Coe7ZIeQ8Yj t0ARxu2xytAkkLCel1Lz1WLmwLstV30g80nkgZf/wr+/BXJW/oIvRlonUkxv+IbBM3dX2OV8 AmRv1ySWPTP7AAMFB/9PQK/VtlNUJvg8GXj9ootzrteGfVZVVT4XBJkfwBcpC/XcPzldjv+3 HYudvpdNK3lLujXeA5fLOH+Z/G9WBc5pFVSMocI71I8bT8lIAzreg0WvkWg5V2WZsUMlnDL9 mpwIGFhlbM3gfDMs7MPMu8YQRFVdUvtSpaAs8OFfGQ0ia3LGZcjA6Ik2+xcqscEJzNH+qh8V m5jjp28yZgaqTaRbg3M/+MTbMpicpZuqF4rnB0AQD12/3BNWDR6bmh+EkYSMcEIpQmBM51qM EKYTQGybRCjpnKHGOxG0rfFY1085mBDZCH5Kx0cl0HVJuQKC+dV2ZY5AqjcKwAxpE75MLFkr wkkEGBECAAkFAlk3nEQCGwwACgkQoDSui/t3IH7nnwCfcJWUDUFKdCsBH/E5d+0ZnMQi+G0A nAuWpQkjM1ASeQwSHEeAWPgskBQL
  • Cc: Andrew Cooper <andrew.cooper3@xxxxxxxxxx>, Willi Junga <xenproject@xxxxxx>, David Woodhouse <dwmw@xxxxxxxxxxxx>, xen-devel@xxxxxxxxxxxxxxxxxxxx
  • Delivery-date: Wed, 30 Oct 2024 10:57:52 +0000
  • List-id: Xen developer discussion <xen-devel.lists.xenproject.org>

On 30.10.2024 11:09, Roger Pau Monné wrote:
> On Wed, Oct 30, 2024 at 10:41:40AM +0100, Jan Beulich wrote:
>> On 29.10.2024 18:48, Roger Pau Monné wrote:
>>> On Tue, Oct 29, 2024 at 05:43:24PM +0100, Jan Beulich wrote:
>>>> On 29.10.2024 12:03, Roger Pau Monne wrote:
>>>>> @@ -273,6 +293,13 @@ void __ioapic_write_entry(
>>>>>      {
>>>>>          __io_apic_write(apic, 0x11 + 2 * pin, eu.w2);
>>>>>          __io_apic_write(apic, 0x10 + 2 * pin, eu.w1);
>>>>> +        /*
>>>>> +         * Called in clear_IO_APIC_pin() before io_apic_pin_eoi is 
>>>>> allocated.
>>>>> +         * Entry will be updated once the array is allocated and there's 
>>>>> a
>>>>> +         * write against the pin.
>>>>> +         */
>>>>> +        if ( io_apic_pin_eoi )
>>>>> +            io_apic_pin_eoi[apic][pin] = e.vector;
>>>>
>>>> The comment here looks a little misleading to me. clear_IO_APIC_pin() calls
>>>> here to, in particular, set the mask bit. With the mask bit the vector 
>>>> isn't
>>>> meaningful anyway (and indeed clear_IO_APIC_pin() sets it to zero, at which
>>>> point recording IRQ_VECTOR_UNASSIGNED might be better than the bogus vector
>>>> 0x00).
>>>
>>> Note that clear_IO_APIC_pin() performs the call to
>>> __ioapic_write_entry() with raw == false, at which point
>>> __ioapic_write_entry() will call iommu_update_ire_from_apic() if IOMMU
>>> IR is enabled.  The cached 'vector' value will be the IOMMU entry
>>> offset for the AMD-Vi case, as the IOMMU code will perform the call to
>>> __ioapic_write_entry() with raw == true.
>>>
>>> What matters is that the cached value matches what's written in the
>>> IO-APIC RTE, and the current logic ensures this.
>>>
>>> What's the benefit of using IRQ_VECTOR_UNASSIGNED if the result is
>>> reading the RTE and finding that vector == 0?
>>
>> It's not specifically the vector == 0 case alone. Shouldn't we leave
>> the latched vector alone when writing an RTE with the mask bit set?
> 
> I'm not sure what's the benefit of the extra logic to detect such
> cases, just to avoid a write to the io_apic_pin_eoi matrix.

Perhaps the largely theoretical concern towards having stale data
somewhere. Yet ...

>> Any still pending EOI (there should be none aiui) can't possibly
>> target the meaningless vector / index in such an RTE. Perhaps it was
>> wrong to suggest to overwrite (with IRQ_VECTOR_UNASSIGNED) what we
>> have on record.
>>
>> Yet at the same time there ought to be a case where the recorded
>> indeed moves back to IRQ_VECTOR_UNASSIGNED.
> 
> The only purpose of the io_apic_pin_eoi matrix is to cache what's
> currently in the RTE entry 'vector' field.  I don't think we should
> attempt to add extra logic as to whether the entry is valid, or
> masked.  Higher level layers should already take care of that.  The
> only purpose of the logic added in this patch is to ensure the EOI is
> performed using what's in the RTE vector field for the requested pin.
> Anything else is out of scope IMO.
> 
> Another option, which would allow to make the matrix store uint8_t
> elements would be to initialize it at allocation with the RTE vector
> fields currently present, IOW: do a raw read of every RTE and set the
> fetched vector field in io_apic_pin_eoi.  Would that be better to you,
> as also removing the need to ever store IRQ_VECTOR_UNASSIGNED?

... yes, that may make sense (and eliminate my concern there).

I wonder whether the allocation of the array then wouldn't better be
moved earlier, to enable_IO_APIC(), such that clear_IO_APIC_pin()
already can suitably update it. In fact, since that function writes
zero[1], no extra reads would then be needed at all, and the array could
simply start out all zeroed.

Jan

[1] With the exception of RTEs saying SMI, where - for having fully
correct data on record - we may then need to update the array slot.



 


Rackspace

Lists.xenproject.org is hosted with RackSpace, monitoring our
servers 24x7x365 and backed by RackSpace's Fanatical Support®.